Occlusion relationship reasoning based on convolution neural networks consists of two subtasks: occlusion boundary extraction and occlusion orientation inference. Due to the essential differences between the two subtasks in the feature expression at the higher and lower stages, it is challenging to carry on them simultaneously in one network. To address this issue, we propose a novel Dual-path Decoder Network, which uniformly extracts occlusion information at higher stages and separates into two paths to recover boundary and occlusion orientation respectively in lower stages. Besides, considering the restriction of occlusion orientation presentation to occlusion orientation learning, we design a new orthogonal representation for occlusion orientation and proposed the Orthogonal Orientation Regression loss which can get rid of the unfitness between occlusion representation and learning and further prompt the occlusion orientation learning. Finally, we apply a multi-scale loss together with our proposed orientation regression loss to guide the boundary and orientation path learning respectively. Experiments demonstrate that our proposed method achieves state-of-the-art results on PIOD and BSDS ownership datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.