Proton-free, alkali-containing layered metal oxides are thermally stable compared to their protonic counterparts, potentially allowing catalysis by Lewis acid sites at elevated temperatures. However, the Lewis acidic nature of these materials has not been well explored, as alkali ions are generally considered to promote basic but to suppress acidic character. Here, we report a rare example of an unusually acidic cesium-containing oxide Cs x Ti 2−y M y O 4 (x = 0.67 or 0.70; M = Ti vacancy □ or Zn). These lepidocrocitetype microcrystals desorbed NH 3 at >400 °C with a total acidity of ≲410 μmol g −1 at a specific surface area of only 5 m 2 g −1 , without the need for lengthy proton−ion exchange, pillaring, delamination, or restacking. The soft and easily polarized Cs + ion essentially drives the formation of the Lewis acidic site on the surfaces as suggested by IR of sorbed pyridine. The twodimensional layered structure was preserved after the oxide was employed in the ethanol conversion at 380 °C, the temperature at which the protonic form could have converted to anatase. The structure was also retained after the NH 3 temperatureprogrammed desorption measurement up to 700 °C. The production of ethylene from ethanol, well-known to occur over acid sites, unambiguously confirmed the acidic nature of this cesium titanate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.