The most dreaded complication of colorectal surgery is anastomotic leakage. Adipose tissue-derived stem cell sheets (ASC sheets) prepared from temperature-responsive culture surfaces can be easily transplanted onto tissues. These sheets are proposed to improve cell transplant efficiency and enhance wound healing. The aim of this study was to investigate whether application of ASC sheets could prevent leakage of sutured colorectal anastomoses. Insufficient suturing of colorectal anastomoses was performed in Wistar rats to create a colorectal anastomotic leakage model. Rats were randomized to ASC sheet application or control group. Leakage, abscess formation, adhesion formation, anastomotic bursting pressure (ABP), and histology were evaluated on postoperative day 3 or 7. ASC sheet application significantly reduced anastomotic leakage compared to controls, without increased adhesion formation. ASC sheet transplantation resulted in more CD3+ T-cells and CD163+ anti-inflammatory macrophages at the anastomotic site than the control group. ABP, vessel density and collagen deposition were not different between groups. Using cell sheet technology, we generated ASC sheets that prevented disruption of sutured colorectal anastomoses as shown by reduced leakage. Increased numbers of anti-inflammatory macrophages and T-cells might have contributed to this positive effect.
Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000 cells/cm2, 20,000 cells/cm2, 50,000 cells/cm2, and 400,000 cells/cm2 with and without 10 or 20 ng/ml tumor necrosis factor alpha (TNFα) and 25 or 50 ng/ml interferon gamma (IFNγ). ASC-sheets formed at 400,000 cells/cm2 after 48 h of culture. With increasing concentrations of TNFα and IFNγ, ASC-sheets with 400,000 cells/cm2 had increased production of angiogenic factors Vascular Endothelial Growth Factor and Fibroblast Growth Factor and decreased expression of pro-inflammatory genes TNFA and Prostaglandin Synthase 2 (PTGS2) compared to lower density ASCs. Moreover, the conditioned medium of ASC-sheets with 400,000 cells/cm2 stimulated with the low concentration of TNFα and IFNγ enhanced endothelial cell proliferation and fibroblast migration. These results suggest that a high cell density enhances ASC paracrine function might beneficial for wound repair, especially in pro-inflammatory conditions.Electronic supplementary materialThe online version of this article (doi:10.1007/s12015-017-9719-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.