With the rapid exhaustion of fossil resources, and environmental pollution relative to the use of fossil-based products, developing eco-friendly products using biomass and/or biodegradable resources is becoming increasingly conspicuous. In this study, ecofriendly and biodegradable composite membranes containing varying MC/PLA (methylcellulose/polylactic acid) mass ratios were prepared. The properties and structures of the MC/PLA membranes were studied by mechanical testing, 13C NMR techniques, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and hot compression. The MC/PLA membranes displayed markedly improved tensile strength and elongation at the MC/PLA mass ratio range of 99:1 to 9:1. The tensile strength and elongation of the MC/PLA (97:3) membrane was found to be the optimum, at 30% and 35% higher than the neat MC, respectively. It was also found that hot compression could improve the tensile strength and elongation of the membranes. At the same time, the membranes showed enough good thermal stability. In addition, the effect of MC/PLA mass ratio on morphologies of the membranes were studied by microscopy technique.
This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self-calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 × 1080 μm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.