Analysis of Alu repeat distribution for the human genome build 32 (released in January 2003) reveals that they occupy nearly one-tenth portion of the sequenced regions. Huge variations in Alu frequencies were seen across the genome with chromosome 19 being the most and chromosome Y being the least Alu dense chromosomes. The highlights of the analysis are as follows: (1). three-fourth of the total genes in the genome are associated with Alus. (2). Alu density is higher in genes as compared with intergenic regions in all the chromosomes except 19 and 22. (3). Alu density in human genome is highly correlated with GC content, gene density and intron density with GC content being major deterministic factor compared with other two. (4). Alu densities were correlated more with gene density than intron density indicating the insertion of Alus in untranslated regions of exons.
In 1988, the World Health Assembly resolved to eradicate poliomyelitis by the year 2000. Although substantial progress was achieved by 2000, global polio eradication proved elusive. In India, the goal was accomplished in 2011, and the entire South-East Asia Region was certified as polio-free in 2014. The year 2016 marks the lowest wild poliovirus type 1 case count ever, the lowest number of polio-endemic countries (Afghanistan, Nigeria and Pakistan), the maintenance of wild poliovirus type 2 eradication, and the continued absence of wild poliovirus type 3 detection since 2012. The year also marks the Global Polio Eradication Initiative (GPEI) moving into the post-cessation of Sabin type 2, after the effort of globally synchronized withdrawal of Sabin type 2 poliovirus in April 2016. Sustained efforts will be needed to ensure polio eradication is accomplished, to overcome the access and security issues, and continue to improve the quality and reach of field operations. After that, surveillance (the “eyes and ears”) will move further to the center stage. Sensitive surveillance will monitor the withdrawal of all Sabin polioviruses, and with facility containment, constitute the cornerstones for eventual global certification of wild poliovirus eradication. An emergency response capacity is essential to institute timely control measures should polio still re-emerge. Simultaneously, the public health community needs to determine whether and how to apply the polio-funded infrastructure to other priorities (after the GPEI funding has stopped). Eradication is the primary goal, but securing eradication will require continued efforts, dedicated resources, and a firm commitment by the global public health community.
Background Typhoid fever prevention and control efforts are critical in an era of rising antimicrobial resistance among typhoid pathogens. India remains one of the highest typhoid disease burden countries, although a highly efficacious typhoid conjugate vaccine (TCV), prequalified by the World Health Organization in 2017, has been available since 2013. In 2018, the Navi Mumbai Municipal Corporation (NMMC) introduced TCV into its immunization program, targeting children aged 9 months to 14 years in 11 of 22 areas (Phase 1 campaign). We describe the decision making, implementation, and delivery costing to inform TCV use in other settings. Methods We collected information on the decision making and campaign implementation in addition to administrative coverage from NMMC and partners. We then used a microcosting approach from the local government (NMMC) perspective, using a new Microsoft Excel–based tool to estimate the financial and economic vaccination campaign costs. Results The planning and implementation of the campaign were led by NMMC with support from multiple partners. A fixed-post campaign was conducted during weekends and public holidays in July–August 2018 which achieved an administrative vaccination coverage of 71% (ranging from 46% in high-income to 92% in low-income areas). Not including vaccine and vaccination supplies, the average financial cost and economic cost per dose of TCV delivery were $0.45 and $1.42, respectively. Conclusion The first public sector TCV campaign was successfully implemented by NMMC, with high administrative coverage in slums and low-income areas. Delivery cost estimates provide important inputs to evaluate the cost-effectiveness and affordability of TCV vaccination through public sector preventive campaigns.
ObjectiveTo review the data, for 1999–2013, on state-level child vaccination coverage in India and provide estimates of coverage at state and national levels.MethodsWe collated data from administrative reports, population-based surveys and other sources and used them to produce annual estimates of vaccination coverage. We investigated bacille Calmette–Guérin vaccine, the first and third doses of vaccine against diphtheria, tetanus and pertussis, the third dose of oral polio vaccine and the first dose of vaccine against measles. We obtained relevant data covering the period 1999–2013 for each of 16 states and territories and the period 2001–2013 for the state of Jharkhand – which was only created in 2000. We aggregated the resultant state-level estimates, using a population-weighted approach, to give national values.FindingsFor each of the vaccinations we investigated, about half of the 253 estimates of annual coverage at state level that we produced were based on survey results. The rest were based on interpolation between – or extrapolation from – so-called anchor points or, more rarely, on administrative data. Our national estimates indicated that, for each of the vaccines we investigated, coverage gradually increased between 1999 and 2010 but then levelled off.ConclusionThe delivery of routine vaccination services to Indian children appears to have improved between 1999 and 2013. There remains considerable scope to improve the recording and reporting of childhood vaccination coverage in India and regular systematic reviews of the coverage data are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.