Applications requiring long-range atmospheric propagation are driving the development of high-power thulium fiber lasers. We report on the performance of two different laser configurations for high-power tunable thulium fiber lasers: one is a single oscillator utilizing a volume Bragg grating for wavelength stabilization; the other is a master oscillator power amplifier system with the oscillator stabilized and made tunable by a diffraction grating. Each configuration provides >150 W of average power, >50% slope efficiency, narrow output linewidth, and >100 nm tunability in the wavelength range around 2 μm.
We describe lasing of a thulium-doped polarizing photonic crystal fiber. A 4 m long fiber with 50 μm diameter core, 250 μm diameter cladding, and d/Λ ratio of 0.18 was pumped with a 793 nm diode and produced a polarized output with a polarization extinction ratio (PER) of 15 dB and an M(2) of <1.15. An intracavity polarizer and half-wave plate minimally increased the PER to 16 dB. The output power had 35% slope efficiency relative to the absorbed pump power. The maximum cw output power was limited to 4 W due to the quantum defect heating of the fiber.
We report on the utilization of a novel Tm:fiber laser source for mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumping. The pump laser is built in a master oscillator power-amplifier configuration delivering up to 3.36 W of polarized, diffraction limited output power with 7 ns pulse duration and 4 kHz repetition rate. This corresponds to a peak power of ∼121 kW and a pulse energy of ∼0.84 mJ. With this source, we generated 27.9 kW of total mid-IR peak power in a doubly resonant oscillator (DRO) configuration. This is, to the best of our knowledge, the highest ever demonstrated mid-IR peak power from a directly Tm:fiber laser pumped ZGP OPO. Moreover, a DRO output with about 284 μJ of total mid-IR pulse energy was demonstrated using 100 ns pump pulses. The wavelength tuning of the idler was extended to 6 μm with lower output power in another OPO experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.