In this paper an area efficient 17T 1-bit hybrid comparator design has been presented by hybridizing PTL and GDI techniques. The proposed 1-bit comparator design consist of 9 NMOS and 8 PMOS. A PTL and GDI full adder module has been used which consume less area at 120 nm as compared with the previous full adder designs. The proposed Hybrid 1-bit comparator design is based on this area efficient 9T full adder module. To improve area and power efficiency a cascade implementation of XOR module has been avoided in the used full adder module. Full adder modules outputs have been used for the generation of three different output of 1-bit comparator designs. The proposed 1-bit comparator has been designed and simulated using DSCH 3.1 and Microwind 3.1 on 120nm. Also the simulation of layout and parametric analysis has been done for the proposed 1-bit comparator design. Power and current variation with respect to the supply voltage has been performed on BSIM-4 and LEVEL-3 on 120nm. Results show that area consumed by the proposed hybrid adder is 329.3µm 2 on 120nm technology. At 1.4V input supply voltage the proposed 1-bit hybrid comparator consume 0.367mW power at BSIM-4 and 0.411mW power at LEVEL-3 and 2.313mA current at BSIM-4 and 3.047mA current at LEVEL-3 model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.