This study describes the morphological and dynamic changes of Parkachik Glacier, Suru River valley, Ladakh Himalaya, India. We used medium-resolution satellite images; CORONA KH-4, Landsat and Sentinel-2A from 1971–2021, and field surveys between 2015 and 2021. In addition, we used the laminar flow-based Himalayan Glacier Thickness Mapper and provide results for recent margin fluctuations, surface ice velocity, ice thickness, and identified glacier-bed overdeepenings. The results revealed that overall the glacier retreated by −210.5 ± 80 m with an average rate of 4 ± 1 m a−1 between 1971 and 2021. Whereas a field study suggested that the glacier retreat increased to −123 ± 72 m at an average rate of −20 ± 12 m a−1 between 2015 and 2021. Surface ice velocity was estimated using COSI-Corr on the Landsat data. Surface ice velocity in the lower ablation zone was 45 ± 2 m a−1 in 1999–2000 and 32 ± 1 m a−1 in 2020–2021, thus reduced by 28%. Further, the maximum thickness of the glacier is estimated to be ~441 m in the accumulation zone, while for glacier tongue it is ~44 m. The simulation results suggest that if the glacier continues to retreat at a similar rate, three lakes of different dimensions may form in subglacial overdeepenings.
This paper aims to broadly understand the response of glaciers to thick and thin debris cover from one of the less explored regions (Zanskar) of the Himalaya. The present study is based on ground-based measurements (from 2015 to 2019), satellite data (since 1971), and available topographic maps (at a 1:50,000 scale). The study includes snout retreat, changes in equilibrium line altitude (ELA), surface elevation, and modeled mass balance of thick and thin debris-covered Pensilungpa (Suru River basin) and Durung-Drung (Doda River basin) glaciers in the western Indian Himalaya, Ladakh, for the past five decades. The Durung-Drung Glacier (DDG) receded ~−624 ± 547 m with an average rate of −12 ± 11 m a−1 between 1971 and 2019. The frontal part of the DDG is broad (~2 km wide), which shows wide discrepancies in its retreat. Compared to DDG, the small and narrow snout of the Pensilungpa Glacier (PG) retreated −270.5 ± 27.5 m (1971 to 2019), with an average rate of −5.6 ± 0.57 m a−1. Similarly, the four years (2015–2019) of field observations suggest that the retreat rate of PG and DDG is −6.7 ± 3 and −18 ± 15 m a−1, and the rate of modeled glacier mass loss is −0.29 ± 0.3 and −0.3 ± 0.3 m w.e. a−1, respectively. Furthermore, the ELA of the DDG and PG between 1971 and 2019 increased by ~59 ± 38 and ~23 ± 19 m, respectively. The change in the longitudinal profile of the glaciers along the centerline between 2000 and 2017 shows the DDG and PG lost ~17 and 15 m surface ice thickness. The change in debris cover plays a critical role in the glacier surface lowering, shrinkage, retreat, and mass balance. Hence, we quantitatively evaluated the influence of the debris cover on summer ablation and terminus recession on two different characteristic glaciers (DDG and PG) with its potential effect on the mass balance process (area-volume loss).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.