Purpose
The present study aims to summarize different non-invasive techniques for continuous glucose monitoring (CGM) in diabetic patients using glucose-oxidase biosensors. In diabetic patients, the self-monitoring of blood glucose (BG) levels through minimally invasive techniques provides a quick method of measuring their BG concentration, unlike conventional laboratory measurements. The drawbacks of minimally invasive techniques include physical pain, anxiety and reduced patient compliance. To overcome these limitations, researchers shifted their attention towards the development of a pain-free and non-invasive glucose monitoring system, which showed encouraging results.
Design/methodology/approach
This study reviews the development of minimally and non-invasive method for continuous glucose level monitoring in diabetic or hyperglycemic patients. Specifically, glucose monitoring using non-invasive techniques, such as spectroscopy-based methods, polarimetry, fluorescence, electromagnetic variations, transdermal extraction-based methods and using body fluids, has been discussed. The various strategies adopted for improving the overall specificity and performance of biosensors are discussed.
Findings
In conclusion, the technology of glucose oxidase-based biosensors for glucose level monitoring is becoming a strong competitor, probably because of high specificity and selectivity, low cost and increased patient compliance. Many industries currently working in this field include Google, Novartis and Microsoft, which demonstrates the significance and strong market potential of self-monitored glucose-oxidase-based biosensors in the near future.
Originality/value
This review paper summarizes comprehensive strategies for continuous glucose monitoring (CGM) in diabetic patients using non-invasive glucose-oxidase biosensors. Non-invasive techniques received significant research interest because of high sensitivity and better patient compliance, unlike invasive ones. Although the results from these innovative devices require frequent calibration against direct BG data, they might be a preferable candidate for future CGM. However, the challenges associated with designing accurate level sensors to biomonitor BG data easily and painlessly needs to be addressed.
An overactive bladder (OAB) is a syndrome which causes an impulsive desire to pass the urine. This desire or urge may become difficult to control and eventually may lead to unintentional passage of urine. The marked increase in a number of patients who suffered with OAB feels very awkward and tries to isolate from societal-life. Such increase in a number of patients has drawn an attention of scientists to research on this area. The proper diagnosis and management of OAB can help the patient to get early relief and cure the symptoms. Looking at the rate of prevalence of OAB in patients, it is essential to understand the pathophysiology, available treatment and recent updates to direct the researchers for further investigation. This review article focuses on comprehensive information of normal bladder physiology, neural control, regulation of micturition, pathophysiology, and prevalence of overactive bladder. This article gives an information regarding diagnosis, different approaches for treatments and future perspective of OAB syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.