Development of the dorsal aorta is a key step in the establishment of the adult bloodforming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Earlier studies in the chick showed that paraxial mesoderm generates another subset of endothelial cells that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. Here we show that a similar process occurs in the zebrafish, where a population of endothelial precursors delaminates from the somitic dermomyotome to incorporate exclusively into the developing dorsal aorta. Whereas somite-derived endothelial cells (SDECs) lack hematopoietic potential, they act as local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of endothelial cells (ECs) contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.