Myocardial infarction (MI) is a serious ischemic condition affecting many individuals around the world. Vascular endothelial growth factor (VEGF) is considered a promising factor for enhancing cardiac function by promoting angiogenesis. However, the lack of a suitable method of VEGF delivery to the MI area is a serious challenge. In this study, we screened a suitable delivery carrier with favorable biocompatibility that targeted the MI area using the strategy of an inherent structure derived from the body and that was based on characteristics of the MI. Mesenchymal stem cells (MSCs) are important infiltrating cells that are derived from blood and have an inherent tropism for the MI zone. We hypothesized that VEGF-encapsulated MSCs targeting MI tissue could improve cardiac function by angiogenesis based on the tropism of the MSCs to the MI area. We first developed VEGF-encapsulated MSCs using self-assembled gelatin and alginate polyelectrolytes to improve angiogenesis and cardiac function. In vitro, the results showed that VEGF-encapsulated MSCs had a sustained release of VEGF and tropism to SDF-1. In vivo, VEGF-encapsulated MSCs migrated to the MI area, enhanced cardiac function, perfused the infarcted area and promoted angiogenesis. These preclinical findings suggest that VEGF-loaded layer-by-layer self-assembled encapsulated MSCs may be a promising and minimally invasive therapy for treating MI. Furthermore, other drugs loaded to layer-by-layer self-assembled encapsulated MSCs may be promising therapies for treating other diseases.
Although strong underwater bioadhesion is important for many biomedical applications, designing adhesives to perform in the presence of body fluids proves to be a challenge. To address this, we propose an underwater and in situ applicable hydrophobic adhesive (UIHA) composed of polydimethylsiloxane, entangled macromolecular silicone fluid, and a reactive silane. The hydrophobic fluid displaced the boundary water, formed an in situ gel, bonded to tissues, and achieved exceptional underwater adhesion strength. Its underwater lap shear adhesion on porcine skin was significantly higher than that of cyanoacrylate and fibrin glues, demonstrating excellent water resistance. The burst pressure of UIHA on porcine skin was 10 times higher than that of fibrin glue. The cytocompatible UIHA successfully sealed ruptured arteries, skin, and lungs in rats, pigs, rabbits, and dogs. Together, the gelation of highly entangled hydrophobic macromolecular fluid provided a means to prepare underwater bioadhesives with strong bonding to tissues and excellent water resistance.
Acute myocardial infarction leads to heart failure due to inadequate regeneration of cardiomyocytes. Therefore, promotion of cardiomyocyte proliferation is the key for the restoration of cardiac function. Induction of the cell cycle and the downregulation of genes that inhibit cardiomyocyte proliferation could induce cardiomyocyte to re-enter into the proliferative state. Hsa-miR-590-3p has good application prospects in myocardial proliferation since it could downregulate the expression of genes inhibiting cell proliferation such as Hopx. However, delivering sufficient hsa-miR-590-3p to the infarct area with non-invasive and non-viral methods efficiently and rapidly is challenging. Based on the high expression of cTnI in the microenvironment of infarct area, we used gene transfection to express a cTnI-targeted short peptide on the surface of mesenchymal stem cells to obtain cTnI-targeted exosomes. These exosomes could localize to infarct area along a cTnI concentration gradient. Exosomes carrying hsa-miR-590-3p were endocytosis by cardiomyocytes and thus promoted cardiomyocyte proliferation in the peri-infarct area and eventually restored cardiac function. Our results show that targeted exosome is a minimally invasive, non-viral, efficient, and rapid delivery system for the treatment of acute myocardial infarction.
ATG4 plays a key role in autophagy induction, but the methods for monitoring ATG4 activity in living cells are limited. Here we designed a novel fluorescent peptide named AU4S for noninvasive detection of ATG4 activity in living cells, which consists of the cell-penetrating peptide (CPP), ATG4-recognized sequence "GTFG," and the fluorophore FITC. Additionally, an ATG4-resistant peptide AG4R was used as a control. CPP can help AU4S or AG4R to penetrate cell membrane efficiently. AU4S but not AG4R can be recognized and cleaved by ATG4, leading to the change of fluorescence intensity. Therefore, the difference between AU4S- and AG4R-measured fluorescence values in the same sample, defined as "F-D value," can reflect ATG4 activity. By detecting the F-D values, we found that ATG4 activity paralleled LC3B-II levels in rapamycin-treated cells, but neither paralleled LC3B-II levels in starved cells nor presented a correlation with LC3B-II accumulation in WBCs from healthy donors or leukemia patients. However, when DTT was added to the system, ATG4 activity not only paralleled LC3B-II levels in starved cells in the presence or absence of autophagy inhibitors, but also presented a positive correlation with LC3B-II accumulation in WBCs from leukemia patients (R(2) = 0.5288). In conclusion, this study provides a convenient, rapid, and quantitative method to monitor ATG4 activity in living cells, which may be beneficial to basic and clinical research on autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.