Automatic visual encoding is frequently employed in automatic visualization tools to automatically map data to visual elements. This paper proposed an automatic visual encoding approach based on deep learning. This approach constructs visual encoding dataset in a more comprehensive and reliable manner to extract and label widely available visualization graphics on the Internet in accordance with three essentials of visualization. The deep learning model is then trained to create a visual encoding model with powerful generalization performance, enabling automated effective visual encoding recommendations for visual designers. The results demonstrated that our approach extends the automatic visual encoding techniques used by existing visualization tools, enhances the functionality and performance of visualization tools, uncovers previously undiscovered data, and increases the coverage of data variables.INDEX TERMS automatic visualization, visual encoding, deep learning, visual channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.