Large graphs involving millions of vertices are common in many practical applications and are challenging to process. To process them we present a fundamental single source shortest path (SSSP) algorithm i.e. Bellman Ford algorithm. Bellman Ford algorithm is a well known method of SSSP calculation and which is considered to be an optimization problem in the graph. SSSP problem is a major problem in the graph theory that has various applications in real world that demand execution of these algorithms in large graphs having millions of edges and sequential implementation of these algorithms takes large amount of time. In this paper, we investigates some methods which aim at parallelizing Bellman Ford Algorithm and to implement some extended or enhanced versions of this algorithm over GPU. GPU provides an application programming interface named as CUDA. CUDA is a general purpose parallel programming architecture which was introduced by Nvidia. This algorithm can reduce the execution time up to half of the basic Bellman Ford algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.