Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.
There are several broadly neutralizing monoclonal antibodies that neutralize influenza viruses with different mechanisms from traditional polyclonal antibodies induced by vaccination. CT149, which is one of the broadly neutralizing antibodies, was also previously reported to neutralize group 2 and some of group 1 influenza viruses (13 out of 13 tested group 2 viruses and 5 out of 11 group 1 viruses). In this study, we developed another antibody with the aim of compensating partial coverage of CT149 against group 1 influenza viruses. CT120 was screened among different antibody candidates and mixed with CT149. Importantly, although the binding sites of CT120 and CT149 are close to each other, the two antibodies do not interfere. The mixture of CT120 and CT149, which we named as CT-P27, showed broad efficacy by neutralizing 37 viruses from 11 different subtypes, of both group 1 and 2 influenza A viruses. Moreover, CT-P27 showed in vivo therapeutic efficacy, long prophylactic potency, and synergistic effect with oseltamivir in influenza virus-challenged mouse models. Our findings provide a novel therapeutic opportunity for more efficient treatment of influenza.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 global pandemic. Vaccines and therapeutics are urgently needed for this highly transmissible virus. In this study, we screened human monoclonal antibodies (mAbs) targeting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein from an antibody library constructed from peripheral blood mononuclear cells of a COVID-19 convalescent patient. A potent neutralizing antibody, termed CT-P59, was identified and found to be effective against various SARS-CoV-2 isolates including the D614G spike protein variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/SARS-CoV-2 RBD showed that CT-P59 blocks interaction regions of SARS-CoV-2 RBD for its cellular receptor, angiotensin converting enzyme 2 (ACE2). The binding orientation of CT-P59 is notably different from the previously reported neutralizing mAbs targeting SARS-CoV-2 RBD suggesting that CT-P59 can be a novel binder to SARS-CoV-2 RBD. Therapeutic effects of CT-P59 were evaluated in three animal models (ferret, hamster, and rhesus monkey), and a substantial reduction in viral titre along with alleviation of clinical symptoms was observed. These findings suggest that the human monoclonal antibody, CT-P59, is a promising therapeutic candidate for treatment of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.