Golden jackal optimization (GJO) is an effective metaheuristic algorithm that imitates the cooperative hunting behavior of the golden jackal. However, since the update of the prey’s position often depends on the male golden jackal and there is insufficient diversity of golden jackals in some cases, it is prone to falling into a local optimal optimum. In order to address these drawbacks of GJO, this paper proposes an improved algorithm, called a hybrid GJO and golden sine (S) algorithm (Gold-SA) with dynamic lens-imaging (L) learning (LSGJO). First, this paper proposes novel dual golden spiral update rules inspired by Gold-SA. These rules give GJO the ability to think like a human (Gold-SA), making the golden jackal more intelligent in the process of preying, and improving the ability and efficiency of optimization. Second, a novel nonlinear dynamic decreasing scaling factor is introduced into the lens-imaging learning operator to maintain the population diversity. The performance of LSGJO is verified through 23 classical benchmark functions and 3 complex design problems in real scenarios. The experimental results show that LSGJO converges faster and more accurately than 11 state-of-the-art optimization algorithms, the global and local search ability has improved significantly, and the proposed algorithm has shown superior performance in solving constrained problems.
The reptile search algorithm is an effective optimization method based on the natural laws of the biological world. By restoring and simulating the hunting process of reptiles, good optimization results can be achieved. However, due to the limitations of natural laws, it is easy to fall into local optima during the exploration phase. Inspired by the different search fields of biological organisms with varying flight heights, this paper proposes a reptile search algorithm considering different flight heights. In the exploration phase, introducing the different flight altitude abilities of two animals, the northern goshawk and the African vulture, enables reptiles to have better search horizons, improve their global search ability, and reduce the probability of falling into local optima during the exploration phase. A novel dynamic factor (DF) is proposed in the exploitation phase to improve the algorithm’s convergence speed and optimization accuracy. To verify the effectiveness of the proposed algorithm, the test results were compared with ten state-of-the-art (SOTA) algorithms on thirty-three famous test functions. The experimental results show that the proposed algorithm has good performance. In addition, the proposed algorithm and ten SOTA algorithms were applied to three micromachine practical engineering problems, and the experimental results show that the proposed algorithm has good problem-solving ability.
The images of surface defects of industrial products contain not only the defect type but also the causal logic related to defective design and manufacturing. This information is recessive and unstructured and difficult to find and use, which cannot provide an apriori basis for solving the problem of product defects in design and manufacturing. Therefore, in this paper, we propose an image semantic refinement recognition method based on causal knowledge for product surface defects. Firstly, an improved ResNet was designed to improve the image classification effect. Then, the causal knowledge graph of surface defects was constructed and stored in Neo4j. Finally, a visualization platform for causal knowledge analysis was developed to realize the causal visualization of the defects in the causal knowledge graph driven by the output data of the network model. In addition, the method is validated by the surface defects dataset. The experimental results show that the average accuracy, recall, and precision of the improved ResNet are improved by 11%, 8.15%, and 8.3%, respectively. Through the application of the visualization platform, the cause results obtained are correct by related analysis and comparison, which can effectively represent the cause of aluminum profile surface defects, verifying the effectiveness of the method proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.