We propose the Encoder-Recurrent-Decoder (ERD) model for recognition and prediction of human body pose in videos and motion capture. The ERD model is a recurrent neural network that incorporates nonlinear encoder and decoder networks before and after recurrent layers. We test instantiations of ERD architectures in the tasks of motion capture (mocap) generation, body pose labeling and body pose forecasting in videos. Our model handles mocap training data across multiple subjects and activity domains, and synthesizes novel motions while avoiding drifting for long periods of time. For human pose labeling, ERD outperforms a per frame body part detector by resolving left-right body part confusions. For video pose forecasting, ERD predicts body joint displacements across a temporal horizon of 400ms and outperforms a first order motion model based on optical flow. ERDs extend previous Long Short Term Memory (LSTM) models in the literature to jointly learn representations and their dynamics. Our experiments show such representation learning is crucial for both labeling and prediction in space-time. We find this is a distinguishing feature between the spatio-temporal visual domain in comparison to 1D text, speech or handwriting, where straightforward hard coded representations have shown excellent results when directly combined with recurrent units [31] .
From an image of a person in action, we can easily guess the 3D motion of the person in the immediate past and future. This is because we have a mental model of 3D human dynamics that we have acquired from observing visual sequences of humans in motion. We present a framework that can similarly learn a representation of 3D dynamics of humans from video via a simple but effective temporal encoding of image features. At test time, from video, the learned temporal representation give rise to smooth 3D mesh predictions. From a single image, our model can recover the current 3D mesh as well as its 3D past and future motion. Our approach is designed so it can learn from videos with 2D pose annotations in a semi-supervised manner. Though annotated data is always limited, there are millions of videos uploaded daily on the Internet. In this work, we harvest this Internet-scale source of unlabeled data by training our model on unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector. Our experiments show that adding more videos with pseudo-ground truth 2D pose monotonically improves 3D prediction performance. We evaluate our model, Human Mesh and Motion Recovery (HMMR), on the recent challenging dataset of 3D Poses in the Wild and obtain state-of-the-art performance on the 3D prediction task without any fine-tuning. The project website with video, code, and data can be found at https://akanazawa.github.io/ human_dynamics/.
We segment moving objects in videos by ranking spatiotemporal segment proposals according to "moving objectness"; how likely they are to contain a moving object. In each video frame, we compute segment proposals using multiple figure-ground segmentations on per frame motion boundaries. We rank them with a Moving Objectness Detector trained on image and motion fields to detect moving objects and discard over/under segmentations or background parts of the scene. We extend the top ranked segments into spatio-temporal tubes using random walkers on motion affinities of dense point trajectories. Our final tube ranking consistently outperforms previous segmentation methods in the two largest video segmentation benchmarks currently available, for any number of proposals. Further, our per frame moving object proposals increase the detection rate up to 7% over previous state-of-the-art static proposal methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.