BackgroundChina has a high rate of antibiotic use. The Chinese Ministry of Health (MOH) established the Center for Antibacterial Surveillance (CAS) to monitor the use of antibacterial agents in hospitals in 2005. The purpose of this study was to identify trends, pattern changes and regional differences in antibiotic consumption in 151 public general tertiary hospitals across China from 2011–2014.Materials and methodsValid data for antibiotic use were collected quarterly, and the antibiotic consumption data were expressed as the defined daily dose (DDD) per 100 inpatient days (ID). We compared the patterns of antibiotic use in different classes and geographical clusters.ResultsTotal antibiotic use significantly decreased (P = 0.018) from 75.86 DDD/100 ID in 2011 to 47.03 DDD/100 ID in 2014. The total consumption of flomoxef sodium and cefminox increased from 1.31 DDD/100 BD in 2011 to 8.6 DDD/100 BD in 2014. Cephalosporins were the most frequently used antibiotics in all regions. Third-generation cephalosporins accounted for more than 45% of the cephalosporins used. Carbapenem use substantially increased (P = 0.043). Penicillin combinations with inhibitors accounted for 50% of the penicillin used, and prescribed meropenem accounted for most of the carbapenems used in all regions in 2014. The subclasses in each antibiotic group were used differently between the seven regions, and the total hospital antibiotic use in 2014 differed significantly by region (P = 0.014).ConclusionAlthough the volume and intensity of total antibiotic use decreased, the antibiotic use patterns were not optimal, and broad-spectrum antibiotics were still the main classes. The aggregate data obtained during the study period reveal similar antibiotic consumption patterns in different regions. These findings provide useful information for improving the rational use of antibiotics. More detailed data on antibiotics linked to inpatient diseases need to be collected in future studies.
Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway.
A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.
Background: To perform meta-analysis to investigate the efficacy and safety of traditional Chinese medicine (TCM) compound in the treatment of endometriosis (EMS)-induced infertility.
Runjing Decoction (RJD) is a prescription of traditional Chinese medicine for the treatment of oligoasthenospermia. However, the molecular mechanism of RJD on oligoasthenospermia still remains unknown. A model of oligoasthenospermia was induced in 30 Sprague Dawley rats by intraperitoneal injection of cyclophosphamide at 35 mg/kg per day for 5 days and treated by intragastric RJD (13.5 g/kg) or L‐carnitine (100 mg/kg) for 14 days. The body weight, testis and epididymis weight, grade A spermatozoa, grade B spermatozoa, the percentage of sperm forward motility (PR%), the sperm activity rate and the sperm density of rats were evaluated before and after RJD treatment. The testis apoptosis was determined by TUNEL staining. The expressions of RXFP1, FoxO1, PI3K, Akt, Bax and Bcl‐2 were determined by qRT‐PCR and Western blot, respectively. After RJD treatment, the grade A spermatozoa, sperm PR%, sperm activity and sperm density were significantly increased relative to those in model rats. Cell apoptosis of testis tissue was reversed by RJD. RJD suppressed cell apoptosis, inhibited the expression of RXFP1, FOXO1, PI3K, AKT and Bax, and promoted the expression levels of Bcl‐2 in testicular tissue of oligoasthenospermia rats. RJD could alleviate sperm quality and testis damage in oligoasthenospermia rats by inhibiting RXFP1/AKT/FOXO1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.