The “hygiene hypothesis” is a theory try to explain the dramatic increases in the prevalence of autoimmune and allergic diseases over the past two to three decades in developed countries. According to this theory, reduced exposure to parasites and microorganisms in childhood is the main cause for the increased incidences of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. In this study, we investigated the impact of Schistosoma japonicum infection on the allergic airway inflammation induced by repeated intracheal inoculations of house dust mites (HDM), which is a Th17 and neutrophils dominant murine asthma model, mimicking severe asthma. We found that S. japonicum infection downregulated airway hyperresponsiveness. The infiltrating cells, Th17 and Th2 effector cytokines in the bronchoalveolar lavage (BAL) fluids and lungs were significantly reduced in the infected mice. Our findings indicated that S. japonicum infection was able to effectively inhibit host’s allergic airway inflammation, which may be related to the upregulated Treg cells upon infection. To our knowledge, it is the first study to reveal the impact of S. japonicum infection on house dust mite induced severe asthma. More in depth investigation is need to elucidate the underlying mechanisms.
Background: Schistosomiasis is an immunopathogenic disease in which Th17 cells play vital roles. Hepatic granuloma formation and subsequent fibrosis are its main pathologic manifestations and the leading causes of hepatic cirrhosis, and effective therapeutic interventions are lacking. In this study, we explored the effects of fasudil, a selective RhoA–Rho-associated kinase (ROCK) inhibitor, on Th17 cells and the pathogenesis of schistosomiasis. Methods: Mice were infected with Schistosoma japonicum and treated with fasudil. The worm burden, hepatic granuloma formation, and fibrosis were evaluated. The roles of fasudil on Th17, Treg, and hepatic stellate cells were analyzed. Results: Fasudil therapy markedly reduced the granuloma size and collagen deposit in livers from mice infected with S. japonicum. However, fasudil therapy did not affect the worm burden in infected mice. The underlying cellular and molecular mechanisms were investigated. Fasudil suppressed the activation and induced the apoptosis of CD4+ T cells. Fasudil inhibited the differentiation and effector cytokine secretion of Th17 cells, whereas it upregulated Treg cells in vitro. It also restrained the in vivo interleukin (IL)-4 and IL-17 levels in infected mice. Fasudil directly induced the apoptosis of hepatic stellate cells and downregulated the expressions of hepatic fibrogenic genes, such as collagen type I (Col-I), Col-III, and transforming growth factor-1 (TGF-β1). These effects may contribute to its anti-pathogenic roles in schistosomiasis. Conclusions: Fasudil inhibits hepatic granuloma formation and fibrosis with downregulation of Th17 cells. Fasudil might serve as a novel therapeutic agent for hepatic fibrosis due to schistosome infections and perhaps other disorders.
However, in liver fibrosis caused by CCl 4 , Th1 cells occupied the dominant position, while proportions of Th2, Th17, and Treg cells decreased gradually. In conclusion, liver fibrosis was a complex pathological process that was regulated by a series of cytokines and immune cells. The pathological progressions and immune responses to S. japonicum or CCl 4 induced liver fibrosis were different, possibly because of their different injury mechanisms. The appropriate animal model should be selected according to the needs of different experiments and the pathogenic factors of liver fibrosis in the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.