Theranostics referring to the ingenious integration of diagnostics and therapeutics has garnered tremendous attention in these years as it provides a promising opportunity for modern personalized and precision medicine. By virtue of the good biocompatibility, outstanding fluorescence property, easy processability and functionalization, promoted photosensitizing efficiency, as well as facile construction of multi‐modality theranostics, fluorophores with aggregation‐induced emission (AIE) characteristics exhibit inexhaustible and vigorous vitality in the field of theranostics. Numerous significant breakthroughs and state‐of‐the‐art progression have been witnessed in the past few years. This review highlights the tremendous aggregation‐enhanced superiorities of AIE luminogens (AIEgens) in disease theranostics mainly involving diagnostic imaging (fluorescence and room temperature phosphorescence), therapeutic intervention (photodynamic therapy), and feasibility in construction of multi‐modality theranostics based on the experimental measurements and theoretical simulations. Additionally, the latest and advanced developments of AIEgens in disease theranostics in the aspect of corresponding strategies to design highly effective AIE‐active theranostics through triggering aggregation formation are comprehensively summarized. Moreover, a brief conclusion with the discussion of current challenges and future perspectives in this area is further presented.
The fabrication of functional nanoplatforms for combating multidrugresistant bacteria is of vital importance. Among them, silver nanoparticles (Ag NPs) have shown an antibacterial effect; however, the remainder cores of Ag NPs after use might have a toxic effect on humans. Thus, Ag ions based materials have been fabricated to substitute Ag NPs for antibacterial applications. Nevertheless, the always-on release state leads to the low biocompatibility, which limits their biomedical applications. In addition, the single effect also restricts their antibacterial ability. Herein, a powerful surface-adaptive, on-demand antimicrobial nanoplatform is fabricated by coating hyaluronic acid (HA) on Ag ions loaded photosensitive metal-organic frameworks to exhibit a strong synergistic effect. The nanoplatform shows good biocompatibility with nontargeted cells, as negatively charged HA can prevent the release of Ag ions. While in the presence of targeted bacteria, the secreted hyaluronidase can degrade HA on the nanoplatform and produce positively charged nanoparticles, which display increased affinity to bacteria and show a strong synergistic antibacterial effect owing to the released Ag ions and generated reactive oxygen species under visible light irradiation. Importantly, due to the outstanding on-demand antimicrobial performance, the nanoplatform also shows great effects on treating multidrug-resistant bacteria infected wounds in mice models.
Recently, antimicrobial photodynamic therapy (aPDT) has been considered as an attractive treatment option for biofilms ablation. However, even very efficient photosensitizers (PSs) still need high light doses and PS concentrations to eliminate biofilms due to the limited penetration and diffusion of PSs in biofilms. Moreover, the hypoxic microenvironment and rapid depletion of oxygen during PDT severely limit their therapeutic effects. Herein, for the first time, a porphyrin-based metal organic framework (pMOF) dots-based nanoplatform with effective biofilm penetration, self-oxygen generation, and enhanced photodynamic efficiency is synthesized for bacterial biofilms eradication. The function-adaptive nanoplatform is composed of pMOF dots encapsulated by human serum albumin-coated manganese dioxide (MnO 2 ). The pH/H 2 O 2responsive decomposition of MnO 2 in biofilms triggers the release of ultrasmall and positively charged pMOF dots and simultaneously generates O 2 insitu to alleviate hypoxia for biofilms. The released pMOF dots with high reactive oxygen species yield can effectively penetrate into biofilms, strongly bind with bacterial cell surface, and ablate bacterial biofilms. Importantly, such a nanoplatform can realize great therapeutic outcomes for treatment of Staphylococcus aureus-infected subcutaneous abscesses in vivo without damage to healthy tissues, which offers a promising strategy for efficient biofilms eradication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.