The crosstalk phenomenon in a phase-leg configuration forbids the operation of SiC devices at high switching speed. A multilevel gate driver (MGD) is well-known for crosstalk mitigation, however, it requires two driver ICs and two voltage supplies to generate four different levels in the gate-source waveform. This paper presents a low-cost quasi-multilevel gate driver (QMGD) for crosstalk suppression which can be implemented on a single driver IC using only positive supply voltage. With a simple auxiliary circuit of the parallel-connected transistor, zener diode, and a capacitor, the proposed driver can generate multilevel output. The auxiliary transistor governs the charging and discharging of the capacitor, controlling voltage at the source terminal of SiC MOSFET and thus generating different voltage levels essential for crosstalk suppression. Performance of the proposed gate driver is validated through Spice based simulation as well as experimental tests conducted with Cree C2M0025120D. It is concluded that the proposed QMGD can replace a complicated MGD without any loss of performance. INDEX TERMS Crosstalk suppression, Quasi-multilevel gate driver (QMGD), SiC MOSFET
Interleaved LLC resonant converters are widely used in various fields. However, interleaved LLC converters under Pulse Frequency Modulation (PFM) will lose the regulation of individual phases, causing a load sharing problem. Existing load sharing solutions have limitations; for example, phase shedding and current sharing cannot be realized at the same time. This paper proposed a novel current sharing method for interleaved full-bridge LLC resonant converters. Based on Zero-Vector-Injection, the voltage applied to the resonant tank is controlled to compensate for the difference in gain caused by component tolerance. The modulation strategy is proposed to maintain soft switching after Zero-Vector-Injection, and the phase shedding technique is also used to improve the efficiency at a light load. The detailed theoretical analysis and implementation method are proposed and validated using simulations. Experiments are also carried out to verify the feasibility of the proposed strategy based on a 2-phase 1.8 kW prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.