Objective: To explore the characteristics of expression recognition and spontaneous activity of the resting state brain in major depressive disorder (MDD) patients to find the neural basis of expression recognition and emotional processing.Methods: In this study, two of the six facial expressions (happiness, sadness, anger, fear, aversion, and surprise) were presented in quick succession using a short expression recognition test. The differences in facial expression recognition between MDD patients and healthy people were compared. Further, the differences in ReHo values between the two groups were compared using a resting-state functional magnetic resonance imaging (fMRI) scan to investigate the characteristics of spontaneous brain activity in the resting state and its relationship with clinical symptoms and the accuracy of facial expression recognition in patients with MDD.Results: (1) The accuracy of facial expression recognition in patients with MDD was lower than that of the HC group. There were differences in facial expression recognition between the two groups in sadness-anger (p = 0.026), surprise-aversion (p = 0.038), surprise-happiness (p = 0.014), surprise-sadness (p = 0.019), fear-happiness (p = 0.027), and fear-anger (p = 0.009). The reaction time for facial expression recognition in the patient group was significantly longer than that of the HC group. (2) Compared with the HC group, the ReHo values decreased in the left parahippocampal gyrus, left thalamus, right putamen, left putamen, and right angular gyrus, and increased in the left superior frontal gyrus, left middle temporal gyrus, left medial superior frontal gyrus, and right medial superior frontal gyrus in the patient group. (3) Spearman correlation analysis showed no statistical correlation between ReHo and HAMD-17 scores in MDD patients (p > 0.05). The ReHo value of the left putamen was negatively correlated with the recognition of fear-surprise (r = −0.429, p = 0.016), the ReHo value of the right angular gyrus was positively correlated with the recognition of sadness-anger (r = 0.367, p = 0.042), and the ReHo value of the right medial superior frontal gyrus was negatively correlated with the recognition of fear-anger (r = −0.377, p = 0.037).Conclusion: In view of the different performance of patients with MDD in facial expression tasks, facial expression recognition may have some suggestive effect on the diagnosis of depression and has clinical guiding significance. Many brain regions, including the frontal lobe, temporal lobe, striatum, hippocampus, and thalamus, in patients with MDD show extensive ReHo abnormalities in the resting state. These brain regions with abnormal spontaneous neural activity are important components of LCSPT and LTC circuits, and their dysfunctional functions cause disorder of emotion regulation. The changes in spontaneous activity in the left putamen, right angular gyrus, and right medial superior frontal gyrus may represent the abnormal pattern of spontaneous brain activity in the neural circuits related to emotion perception and may be the neural basis of facial expression recognition.
PurposeTo explore the differences in facial emotion recognition among patients with unipolar depression (UD), bipolar depression (BD), and normal controls.MethodsThirty patients with UD and 30 patients with BD, respectively, were recruited in Zhumadian Second People’s Hospital from July 2018 to August 2019. Fifteen groups of facial expressions including happiness, sadness, anger, surprise, fear, and disgust were identified.ResultsA single-factor ANOVA was used to analyze the facial expression recognition results of the three groups, and the differences were found in the happy-sad (P = 0.009), happy-angry (P = 0.001), happy-surprised (P = 0.034), and disgust-surprised (P = 0.038) facial expression groups. The independent sample T-test analysis showed that compared with the normal control group, there were differences in the happy-sad (P = 0.009) and happy-angry (P = 0.009) groups in patients with BD, and the accuracy of facial expression recognition was lower than the normal control group. Compared with patients with UD, there were differences between the happy-sad (P = 0.005) and happy-angry (P = 0.002) groups, and the identification accuracy of patients with UD was higher than that of patients with BD. The time of facial expression recognition in the normal control group was shorter than that in the patient group. Using happiness-sadness to distinguish unipolar and BDs, the area under the ROC curve (AUC) is 0.933, the specificity is 0.889, and the sensitivity is 0.667. Using happiness-anger to distinguish unipolar and BD, the AUC was 0.733, the specificity was 0.778, and the sensitivity was 0.600.ConclusionPatients with UD had lower performance in recognizing negative expressions and had longer recognition times. Those with BD had lower accuracy in recognizing positive expressions and longer recognition times. Rapid facial expression recognition performance may be as a potential endophenotype for early identification of unipolar and BD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.