In this paper, we study the spatial averages of the solution to the parabolic Anderson model driven by a space-time Gaussian homogeneous noise that is colored in time and space. We establish quantitative central limit theorems (CLT) of this spatial statistics under some mild assumptions, by using the Malliavin-Stein approach. The highlight of this paper is the obtention of rate of convergence in the colored-in-time setting, where one can not use Itô's calculus due to the lack of martingale structure. In particular, modulo highly technical computations, we apply a modified version of second-order Gaussian Poincaré inequality to overcome this lack of martingale structure and our work improves the results by Nualart-Zheng (2020 Electron.
In this paper, we study the spatial averages of the solution to the parabolic Anderson model driven by a space-time Gaussian homogeneous noise that is colored in both time and space. We establish quantitative central limit theorems (CLT) of this spatial statistics under some mild assumptions, by using the Malliavin-Stein approach. The highlight of this paper is the obtention of rate of convergence in the colored-in-time setting, where one can not use Ito calculus due to the lack of martingale structure. In particular, modulo highly technical computations, we apply a modified version of second-order Gaussian Poincaré inequality to overcome this lack of martingale structure and our work improves the results by Nualart-Zheng (Electron.
In this paper, we develop the theory of nonlinear rough paths. Following the ideas of Lyons and Gubinelli, we define the nonlinear rough integral ∫ t s W (dr, Y r ), where W and Y are only α-Hölder continuous in time with α ∈ ( 1 3 , 1 2 ]. Also, we study the Kunita-type equation Y t = ξ + ∫ t 0 W (dr, Y s ), obtaining the local and global existence and uniqueness of the solution under suitable sufficient conditions.As an application, we study transport equations with rough vector fields and observe that the classical solution formula for smooth and Young's cases does not provide a solution to the rough equation. Indeed this formula satisfies a transport equation with additional compensator terms (see (1.7)).
It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often called a complex reaction in contrast to an elementary reaction. Photosynthesis
$6 \text{CO}_2+6 \text{H}_2\text{O} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2$
is an example of such complex reaction. We introduce a mathematical operation that corresponds to summing two chemical reactions. Specifically, we define an associative and non-communicative operation on the product space
${\mathbb{N}}_0^n\times {\mathbb{N}}_0^n$
(representing the reactant and the product of a chemical reaction, respectively). The operation models the overall effect of two reactions happening in succession, one after the other. We study the algebraic properties of the operation and apply the results to stochastic reaction networks (RNs), in particular to reachability of states, and to reduction of RNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.