Nitric oxide (NO) is a gaseous neurotransmitter that may mediate a decrease in sympathetic output to the periphery. This implication predicts that NO-producing neurons in the brain are activated in animals experiencing increased levels of sympathetic activity. To test this prediction, we subjected three groups of experimental rats to differing levels of environmental stimulation for 1 hour: minimal stimulation, moderate stimulation, and restraint stress. NO-producing neurons were histochemically visualized in sections of the brain, and activation of these neurons was assessed according to the neuronal expression of the immediate early gene c-fos. Constitutive activation of NO-producing neurons was found in the hypothalamus (paraventricular and supraoptic nuclei), dorsal raphe nuclei, and spinal nucleus of the trigeminal nerve of minimally stimulated rats. When animals were subjected to a novel environment (moderate stimulation), additional NO-producing neurons were activated in the medial septum, medial amygdala, hypothalamic nuclei (lateral, periventricular, and posterior), colliculi, nucleus raphe obscurus, medial vestibular nucleus, nucleus of the tractus solitarius, and several components of the ventrolateral medulla. Restraint stress caused the activation of NO-producing neurons in all of these areas, often in increasing numbers, and the activation of additional NO-producing neurons in the diagonal band of Broca, lateral and medial preoptic areas, basomedial and basolateral amygdalar nuclei, hypothalamic nuclei (dorsomedial, retrochiasmatic supraoptic, and circularis), nucleus raphe pontus, lateral parabrachial nucleus, and pontine nuclei. Expressed as a proportion of NO-producing neurons per section, the largest percentages (>20%) of double-stained neurons were found in the basolateral amygdala (46%), hypothalamic paraventricular nucleus (35%), corpora quadrigemina (estimated at 40%), dorsal raphe (45%), nuclei raphe pontus (33%) and obscurus (63%), lateral parabrachial nucleus (22%), medial vestibular nucleus (25%), lateral division of the nucleus paragigantocellularis (26%), and lateral reticular nucleus (35%). Evidence from other studies increasingly supports the concept that NO plays a generalized role in autonomic regulation by decreasing sympathetic output. Our results show that more NO-producing neurons were activated during stress than during minimal or moderate levels of stimulation. Together, the evidence suggests that NO is a neurochemical messenger that is utilized by individual autonomic neurons as the organism responds to increased levels of sympathetic activity.
The medial prefrontal cortex (MPFC) is a key brain area in depressive symptomatology; specifically, glutamate (Glu) has been reported to play a significant role in major depression (MD) in this area. MPFC Glu levels are sensitive to ovarian hormone fluctuations and pregnancy and the postpartum period are associated with the most substantial physiological alterations of female hormones. It is therefore logical to measure MPFC Glu levels in women with postpartum depression (PPD). Using in vivo magnetic resonance spectroscopy (MRS) at a field strength of 3 T, we acquired single-voxel spectra from the MPFC of 12 women with PPD and 12 healthy controls (HCs) matched for postpartum scan timing. Water-referenced MPFC Glu levels were measured using a MRS technique that allowed us to be specific for Glu with very little glutamine contamination. The concentrations of other water-quantified brain metabolites such as glycerophosphorylcholine plus phosphorylcholine, N-acetylaspartate (NAA), and creatine plus phosphocreatine were measured in the same MR spectra. MPFC Glu levels were higher in women with PPD (7.21±1.20) compared to matched HCs (6.04±1.21). There were no differences between groups for other brain metabolites measured. These findings suggest an association between Glu dysregulation in the MPFC and PPD. Whether the pathophysiology of PPD differs from the pathophysiology of MD remains to be determined. Further investigations are needed to determine the chronological associations between the occurrence of symptoms of PPD and the onset of changes in MPFC Glu levels.
A group of 3'-O-nitro-2'-deoxyuridines, 3'-O-nitro-2'-deoxycytidines, and 5'-O-nitro-2'-deoxyuridines possessing a variety of substituents (H, Me, F, I) at the C-5 position were synthesized for evaluation as anticancer/antiviral agents that have the ability to concomitantly release cytotoxic nitric oxide (*NO). Although these compounds generally released a greater percent of *NO than the reference drug isosorbide dinitrate upon incubation in the presence of l-cysteine, or serum, their cytotoxicity (CC(50) = 10(-3) to 10(-6) M range) was comparable to 5-iodo-2'-deoxyuridine, but weaker than 5-fluoro-2'-deoxyuridine, against a variety of cancer cell lines. No differences in cytotoxicity against nontransfected (KBALB, 143B), and the corresponding transfected (KBALB-STK, 143B-LTK) cancer cell lines possessing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK(+)) were observed, indicating that expression of the viral TK enzyme did not provide a gene therapeutic effect. These nitrate esters were inactive antiviral agents except for 5-iodo-3'-O-nitro-2'-deoxyuridine that showed modest activity against HSV-1, HSV-2, and vaccinia virus.
1-(2-Deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene (5-IDFPdR) is one of the several unnatural 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-substituted-benzenes recently synthesized for evaluation as anticancer, antiviral and diagnostic imaging agents. This class of C-nucleosides was designed to exploit several potential advantages relative to classical 5-substituted-2'-deoxyuridines, including stability towards phosphorolysis by pyrimidine phosphorylase, increased lipophilicity that may alter their ability to cross the blood-brain-barrier, and a greater resistance towards catabolism and deiodination. The physiochemical evaluation of 5-IDFPdR showed high lipophilicity (log P = 2.8), moderately high protein binding (70-75%), stability towards phosphorolysis (e.g. no evidence of metabolic deglycosylation) by thymidine phosphorylase, and minimal microsomal metabolism in vitro. Pharmacokinetic studies of 5-IDFPdR in rat were characterized by a short elimination half-life (9-12 min), modest urinary elimination in pooled 0-24 h urine specimens (10-14%, including 2% as unconjugated drug) and high oral bioavailability (F = 0.96). Both glucuronide and sulfate metabolites were present in urine. Glucuronidation was the predominant conjugation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.