Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta-thalassaemia (βThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique haematological profile of βThal+ could affect capacity of enduring storage stress, however, the storability of βThal+ RBCs is largely unknown. In this study, RBCs from 18 βThal+ donors were stored in the cold and profiled for primary (haemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The βThal+ units exhibited better levels of storage haemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, βThal+ RBCs had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher urate-dependent antioxidant capacity were noted in the βThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of pentose phosphate pathway and glycolysis upstream to pyruvate kinase in βThal+ RBCs. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in βThal+ RBCs was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The βThal mutations impact the metabolism and the susceptibility to haemolysis of stored RBCs, suggesting good post-transfusion recovery. However, haemoglobin increment and other clinical outcomes of βThal+ RBC transfusion deserve elucidation by future studies.
Immune profiling of patients with COVID-19 has shown that SARS-CoV-2 causes severe lymphocyte deficiencies (e.g., lymphopenia, decreased numbers, and exhaustion of T cells) and increased levels of pro-inflammatory monocytes. Peripheral blood (PB) samples from convalescent plasma (CP) donors, COVID-19 patients, and control subjects were analyzed by multiparametric flow cytometry, allowing the identification of a wide panel of immune cells, comprising lymphocytes (T, B, natural killer (NK) and NKT cells), monocytes, granulocytes, and their subsets. Compared to active COVID-19 patients, our results revealed that the immune profile of recovered donors was restored for most subpopulations. Nevertheless, even 2 months after recovery, CP donors still had reduced levels of CD4+ T and B cells, as well as granulocytes. CP donors with non-detectable levels of anti-SARS-CoV-2-specific antibodies in their serum were characterized by higher Th9 and Th17 cells, which were possibly expanded at the expense of Th2 humoral immunity. The most noticeable alterations were identified in previously hospitalized CP donors, who presented the lowest levels of CD8+ regulatory T cells, the highest levels of CD56+CD16− NKT cells, and a promotion of a Th17-type phenotype, which might be associated with a prolonged pro-inflammatory response. A longer follow-up of CP donors will eventually reveal the time needed for full recovery of their immune system competence.
Due to early implementation of public health measures, Greece had low number of SARS-CoV-2 infections and COVID-19 severe incidents in hospitalized patients. The National and Kapodistrian University of Athens (ΝΚUA), especially its health-care/medical personnel, has been actively involved in the first line of state responses to COVID-19. To estimate the prevalence of antibodies (Igs) against SARS-CoV-2 among NKUA members, we designed a five consecutive monthly serosurvey among randomly selected NKUA consenting volunteers. Here, we present the results from the first 2500 plasma samples collected during June–July 2020. Twenty-five donors were tested positive for anti-SARS-CoV-2 Igs; thus, the overall seroprevalence was 1.00%. The weighted overall seroprevalence was 0.93% (95% CI: 0.27, 2.09) and varied between males [1.05% (95% CI: 0.18, 2.92)] and females [0.84% (95% CI: 0.13, 2.49)], age-groups and different categories (higher in participants from the School of Health Sciences and in scientific affiliates/faculty members/laboratory assistants), but no statistical differences were detected. Although focused on the specific population of NKUA members, our study shows that the prevalence of anti-SARS-CoV-2 Igs for the period June–July 2020 remained low and provides knowledge of public health importance for the NKUA members. Given that approximately one in three infections was asymptomatic, continuous monitoring of the progression of the pandemic by assessing Ig seroprevalence is needed.
Persisting alterations and unique immune signatures have been previously detected in the peripheral blood of convalescent plasma (CP) donors at approximately two months after initial SARS-CoV-2 infection. This article presents the results on the sequential analysis of 47 CP donors at a median time of eight months (range 7.5–8.5 months) post infection, as assessed by flow cytometry. Interestingly, our results show a significant variation of the relevant immune subset composition among CP donors. Regarding innate immunity, both non-classical monocytes, and CD11b- granulocytes had fully recovered at eight months post COVID-19 infection. Intermediate monocytes and natural killer (NK) cells had already been restored at the two-month evaluation and remained stable. Regarding adaptive immunity, the COVID-19-related skewed Th1 and Th2 cell polarization remained at the same levels as in two months. However, low levels of total B cells were detected even after eight months from infection. A persisting reduction of CD8+ Tregs and changes in the NKT cell compartment were also remarkable. CP donors present with a unique immune landscape at eight months post COVID-19 infection, which is characterized by the notable restoration of the components of innate immunity along with a persisting imprint of SARS-CoV-2 in cells of the adaptive immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.