Summary The underlying mechanism of oil recovery by low-salinity-water injection (LSWI) is still unknown. It would, therefore, be difficult to predict the performance of reservoirs under LSWI. A number of mechanisms have been proposed in the literature, but these are controversial and have largely ignored crucial fluid/fluid interactions. Our direct-flow-visualization investigations (Emadi and Sohrabi 2013) have revealed that a physical phenomenon takes place when certain crude oils are contacted by low-salinity water, leading to a spontaneous formation of micelles that can be seen in the form of microdispersions in the oil phase. In this paper, we present the results of a comprehensive study that includes experiments at different scales designed to systematically investigate the role of the observed crude-oil/brine interaction and micelle formation in the process of oil recovery by LSWI. The experiments include direct-flow (micromodel) visualization, crude-oil characterization, coreflooding, and spontaneous-imbibition experiments. We establish a clear link between the formation of these micelles, the natural surface-active components of crude oil, and the improvement in oil recovery because of LSWI. We present the results of a series of spontaneous- and forced-imbibition experiments carefully designed with reservoir cores to investigate the role of the microdispersions in wettability alteration and oil recovery. To further assess the significance of this mechanism, in a separate exercise, we eliminate the effect of clay by performing an LSWI experiment in a clay-free core. Absence of clay minerals is expected to significantly reduce the influence of the previously proposed mechanisms for oil recovery by LSWI. Nevertheless, we observe significant additional oil recovery compared with high-salinity-water injection (HSWI) in the clay-free porous medium. The additional oil recovery is attributed to the formation of micelles stemming from the crude-oil/brine-interaction mechanism described in this work and our previous related publications. Compositional analyses of the oil produced during this coreflood experiment indicate that the natural surface-active compounds of the crude oil had been desorbed from the rock surfaces during the LSWI period of the experiment when the additional oil was produced. The results of this study present new insights into the fundamental mechanisms involved in oil recovery by LSWI and new criteria for evaluating the potential of LSWI for application in oil reservoirs. The fluid/fluid interactions revealed in this research can be applied to oil recovery from both sandstone and carbonate oil reservoirs because they are mainly derived from fluid/fluid interactions that control wettability alteration in both sandstone and carbonate rocks.
The underlying mechanism of oil recovery by low salinity water injection (LSWI) is still unknown. It would, therefore, be difficult to predict the performance of reservoirs under LSWI. A number of mechanisms have been proposed in the literature but these are controversial and have largely ignored crucial fluid/fluid interactions. Our direct flow visualization investigations have revealed that a physical phenomenon takes place when certain crude oils are contacted by low salinity water leading to a spontaneous formation of micelles which can be seen in the form of micro-dispersions in the oil phase. In this paper, we present the results of a comprehensive study that includes experiments at different scales designed to systematically investigate the role of the observed crude oil/brine interaction and micelle formation in the process of oil recovery by LSWI. The experiments include; direct flow (micromodel) visualization, crude oil characterization, coreflooding, and spontaneous imbibition experiments. We establish a clear link between the formation of these micelles, the natural surface active components of crude oil, and the improvement in oil recovery due to LSWI. We present the results of a series of spontaneous and forced imbibition experiments carefully designed using reservoir cores to investigate the role of the micro-dispersions in wettability alteration and oil recovery. To further assess the significance of this mechanism, in a separate exercise, we eliminate the effect of clay by performing a LSWI experiment in a clay-free core. Absence of clay minerals is expected to significantly reduce the influence of the previously proposed mechanisms for oil recovery by LSWI. Nevertheless, we observe significant additional oil recovery compared to high salinity water injection in the clay-free porous medium. The additional oil recovery is attributed to the formation of micelles stemming from the crude oil/brine interaction mechanism described in this work and our previous related publications. Compositional analyses of the oil produced during this coreflood experiment indicates that the natural surface active compounds of the crude oil had been desorbed from the rock surfaces during the LSWI period of the experiment when the additional oil was produced. The results of this study present new insights into the fundamental mechanisms involved in oil recovery by LSWI and new criteria for evaluating the potential of LSWI for application in oil reservoirs. The fluid/fluid interactions revealed in this research applies to oil recovery from both sandstone and carbonate oil reservoirs.
Enriching the injection water with CO2 has demonstrated promising results as a method for improving oil recoveries and securely storing CO2 in oil reservoirs. However, the mutual interactions taking place between carbonated water and reservoir oil at elevated reservoir conditions are not fully understood. Here we present the results of a thorough investigation of the processes leading to additional oil recovery through integrating pore-scale visualisations and coreflood experiments. Four pore-scale visualization (micromodel) experiments were performed at reservoir conditions using the recombined live oil under different injection scenarios (tertiary and secondary). Having identified the underlying dynamic interactions at pore-scales, the performance of different injection scenarios for carbonated water injection (CWI) was investigated using carbonate reservoir rocks. Five coreflood experiments were carried out using both fully and half-saturated carbonated water to sensitise the impact of CO2 content of injection water on the performance of CWI. In-situ liberation of gaseous phase was identified (from direct visualisations) as the predominant mechanism controlling the performance of carbonated water injection. The gas phase formation would bring about higher degrees of oil swelling, and it would also create a three phase flow regime which leads to further reduction of residual oil saturation. The observations confirm that the performance of CWI should be investigated under reservoir conditions using multi-components live oil and reservoir cores. Any simplification, e.g. one components make-up gas or reduced pressure/temperature, of the reservoir conditions would misleadingly change the pore-scale event and hence, the performance of CWI. From the core displacement tests, it was observed that secondary CWI could recover a significant amount of additional oil, which was 26% compared to plain seawater injection. The tertiary carbonated water would effectively mobilise 15.3% of the residual oil (after seawater injection). When CO2 content of injected CW (carbonated water) was halved, the oil recovery dropped by 13. The results revealed that the oil recovery would be lower if CO2 concentration is reduced but the extent of oil recovery reduction would be much less than the level of reduction in CO2 concentration. The unique and integrated research approach employed here enables us to produce a more complete and reliable set of findings and understandings at realistic reservoir conditions. During CWI under reservoir conditions, an "in-situ WAG-type" three-phase flow would be generated with more effective sweep efficiency and pore-scale advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.