From the perspective of sustainable waste management and its environmental impact, waste biomass bottom ash (BA) remains problematic and challenging to use as a recycling material for civil engineering infrastructures. This study evaluated the performance of lateritic soil (LS), stabilized with cement and biomass BA, as a subbase material. BA has been considered a replacement material in LS prior to the introduction of hydraulic cement stabilization means. The geotechnical engineering tests comprised the modified Proctor test, the California Bearing Ratio (CBR) test, and the unconfined compression test. X-ray fluorescence (XRF) and X-ray diffraction (XRD) tests were conducted to investigate the mineralogical properties of the stabilized soil samples. The leachate test was performed with a permeability mold to measure the release of heavy metals. Finally, the benefits of using the stabilized subbase material were assessed using the mechanistic–empirical (M–E) pavement design approach. Based on the results obtained, the strength and stiffness characteristics of the stabilized soils indicate that the efficiency of the mix satisfied the Thailand highway specification. The admixture of 80% BA and 5% cement is suggested for use as a soil–cement subbase material for flexible pavements, due to its good engineering and environmental properties. The results of the M–E design demonstrate the effectiveness of the stabilized soil presented herein. The study’s outcomes are predicted to promote the utilization of waste BA as a promising pavement material.
Abstract. It can be said that the soil compaction test is currently the standard method for obtaining the right amount of water to be added in order to achieve a maximum dry density. Then, the water content obtained from laboratory work, known as optimum moisture content, is utilised in the field for compacting the soil. It should be noted that the compaction test is carried out on a soil sample prepared in a mould horizontally laid. In the field, however, quite often the compaction is done on side embankments or sloping grounds. Hence, using the laboratory result to control the field density for such cases is problematic. Therefore, this study developed a device that could be used to conduct the compaction test concerning the following conditions: (1) compaction is vertically applied to a soil sample inclined at various angles (VC), and (2) compaction is normal to an inclined soil sample (IC). Some initial tests on lateritic soil using both methods developed showed that at the same energy applied the densities are quite different. These results confirm that, in the case of sloping ground, the standard compaction test may not be appropriate.
A mixture of kaolinite and oil palm ash with latex binder were from to make a core of the geosynthetic clay liner. Then, it was covered by latex-coated calico. The GCL developed had the width and length of 100 cm and 200 cm, with the total thickness of about 7 mm. It is to be used as liner at the bottom of a landfill in order to prevent the leachate to have a contact with the groundwater that could harm people who make use of that contaminated water. Several laboratory tests were carried out to evaluate whether it has the same properties as commercial ones; and, it can be employed in field. Only punching shear resistance and tensile strength are reported in this paper. It was found that both tests yield results that are in accordance with the industrial standard, indicating that it can be really employed in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.