Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR-linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.
Ultra-low-field MRI uses microtesla fields for signal encoding and sensitive superconducting quantum interference devices for signal detection. Similarly, modern magnetoencephalography (MEG) systems use arrays comprising hundreds of superconducting quantum interference device channels to measure the magnetic field generated by neuronal activity. In this article, hybrid MEG-MRI instrumentation based on a commercial whole-head MEG device is described. The combination of ultra-low-field MRI and MEG in a single device is expected to significantly reduce coregistration errors between the two modalities, to simplify MEG analysis, and to improve MEG localization accuracy. The sensor solutions, MRI coils (including a superconducting polarizing coil), an optimized pulse sequence, and a reconstruction method suitable for hybrid MEG-MRI measurements are described. The performance of the device is demonstrated by presenting ultra-low-field-MR images and MEG recordings that are compared with data obtained with a 3T scanner and a commercial MEG device.
The visually evoked field (VEF) maps at 80 ms after the stimulus onset. The contour step is 50 fT; red indicates field out and blue into the head surface. The green arrows depict the surface projection of the equivalent current dipoles fitted to the data. This image is from the article by Vesanen et al (pp 1795-1804).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.