The vibration response of a damped linear system is always calculated based on the mode superposition method. However, the construction of the damping matrix is difficult for the conventional mode superposition methods based on the viscous damping model, and this problem is much more serious for nonproportionally damped linear systems. The damping matrix based on the hysteretic damping model is easy to construct and unique, which is determined only by the structural stiffness and material loss factor. The time-domain motion equation of a multi-degree-of-freedom nonproportionally damped linear system is easily constructed based on the hysteretic damping model. According to the characteristics of external excitation, the general solution of the corresponding homogeneous equation and special solution of the corresponding nonhomogeneous equation can be solved. By the aid of the easiness of the damping matrix, a complex mode superposition method based on the hysteretic damping model is proposed for the nonproportionally damped linear system. Based on the proposed method, a user subroutine in ANSYS and MATLAB is developed to calculate vibration responses in time-domain dynamic analyses. A shaking table test of a cantilever plate composed of host and damping layers is conducted to validate the proposed method. The method proposed in this article is unconditionally convergent, and its convergence is independent of the time step of time-domain analyses. Compared with the common complex mode superposition method based on the viscous damping model, the simulation results of the proposed method are closer to the test results, and its accuracy and efficiency are higher. In addition, the calculation results of the proposed method are unique, which is irrelevant to the choice of vibration modes.
In order to realize the time-domain analysis based on hysteretic damping model, the frequency-independent time-domain damping model of single degree of freedom (SDOF) system is constructed. Based on the assumed relationship of vibration responses, the equivalent frequency-independent time-domain damping model in complex domain and real domain are proposed. The characteristic that the dissipated energy in each cycle is not related to the vibration frequency of external excitation is retained for the two equivalent damping models. Combined with Newmark- β method, the corresponding numerical methods are obtained. The numerical examples show that the free vibration responses are stably convergent based on equivalent damping models. The numerical results of vibration responses of SDOF system due to earthquake wave have high calculation accuracy. Compared with equivalent frequency-independent time-domain damping model in real domain, the computational accuracy of equivalent frequency-independent time-domain damping model in complex domain is higher, and the computational efficiency is lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.