Brain cells manufacture and secrete angiogenic peptides after focal cerebral ischemia, but the purpose of this angiogenic response is unknown. Because the maximum possible regional cerebral blood flow is determined by the quantity of microvessels in each unit volume, it is possible that angiogenic peptides are secreted to generate new collateral channels; other possibilities include neuroprotection, recovery/regeneration, and removal of necrotic debris. If the brain attempts to create new collaterals, microvessel density should increase significantly after ischemia. Conversely, if angiogenic-signaling molecules serve some other purpose, microvessel densities may increase slightly or not at all. To clarify, the authors measured microvessel densities with quantitative morphometry. Left middle cerebral arteries of adult male Sprague-Dawley rats were occluded with intraluminal nylon suture for 4 hours followed by 7, 14, 19, or 30 days of reperfusion. Controls received no surgery or suture occlusion. Changes in microvessel density and macrophage numbers were measured by light microscopic morphometry using semiautomated stereologic methods. Microvessel density increased only in the ischemic margin adjacent to areas of pannecrosis and was always associated with increased numbers of macrophages. Ischemic brain areas without macrophages displayed no vascularity changes compared with normal animals. These data suggest that ischemia-induced microvessels are formed to facilitate macrophage infiltration and removal of necrotic brain.
Vascular endothelial growth factor (VEGF) is currently considered a potential pharmacologic agent for stroke therapy because of its strong neuroprotective and angiogenic capacities. Nonetheless, it is unclear how neuroprotection and angiogenesis by exogenous VEGF are related and whether they are concurrent events. In this study, the authors evaluated by stereology the effect of VEGF on neuronal and vascular volume densities of normal and ischemic brain cortices of adult male Sprague-Dawley rats. Ischemia was induced by a 4-hour occlusion of the middle cerebral artery. Low, intermediate, and high doses of VEGF165 were infused through the internal carotid artery for 7 days by an indwelling osmotic pump. The low and intermediate doses, which did not induce angiogenesis, significantly promoted neuroprotection of ischemic brains and did not damage neurons of normal brains. In contrast, the high dose that induced angiogenesis showed no neuroprotection of ischemic brains and damaged neurons of normal brains. These findings suggest that in vivo neuroprotection of ischemic brains by exogenous VEGF does not necessarily occur simultaneously with angiogenesis. Instead, neuroprotection may be greatly compromised by doses of VEGF capable of inducing angiogenesis. Stroke intervention efforts attempting to induce neuroprotection and angiogenesis concurrently through VEGF monotherapy should be approached with caution.
We developed and validated silicon-based neural probes for neural stimulating and recording in long-term implantation in the brain. The probes combine the deep reactive ion etching process and mechanical shaping of their tip region, yielding a mechanically sturdy shank with a sharpened tip to reduce insertion force into the brain and spinal cord, particularly, with multiple shanks in the same array. The arrays’ insertion forces have been quantified in vitro. Five consecutive chronically-implanted devices were fully functional from 3 to 18 months. The microelectrode sites were electroplated with iridium oxide, and the charge injection capacity measurements were performed both in vitro and after implantation in the adult feline brain. The functionality of the chronic array was validated by stimulating in the cochlear nucleus and recording the evoked neuronal activity in the central nucleus of the inferior colliculus. The arrays’ recording quality has also been quantified in vivo with neuronal spike activity recorded up to 566 days after implantation. Histopathology evaluation of neurons and astrocytes using immunohistochemical stains indicated minimal alterations of tissue architecture after chronic implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.