The conventional gravel pack sand control completion (High Rate Water Pack / Extension Pack) was the primary sand control method for PTTEPI, Myanmar Zawtika field since 2014 for more than 80 wells. Although the completion cost of gravel pack sand control was dramatically reduced around 75 percent due to the operation performance improvement along 5 years, the further cost reduction still mandatory to make the future development phase feasible. In order to tackle the well economy challenge, several alternative sand control completion designs were reviewed with the existing Zawtika subsurface information. The Chemical Sand Consolidation (CSC) or resin which is cost-effective method to control the sand production with injected chemicals is selected to be tested in 3 candidate wells. Therefore, the first trial campaign of CSC was performed with the Coiled Tubing Unit (CTU) in March to May 2019 with positive campaign results. The operation program and lesson learned were captured in this paper for future improvement in term of well candidate selection, operation planning and execution. The three monobore completion wells were treated with the CSC. The results positively showed that the higher sand-free rates can be achieved. The operation steps consist of 1) Perform sand cleanout to existing perforation interval or perforate the new formation interval. 2) Pumping pre-flush chemical to conditioning the formation to accept the resin 3) Pumping resin to coating on formation grain sand 4) Pumping the post-flush chemical to remove an excess resin from sand 5) Shut in the well to wait for resin curing before open back to production. However, throughout the campaign, there were several lessons learned, which will be required for future cost and time optimization. In operational view, the proper candidate selection shall avoid operational difficulties e.g. available rathole. As well, detailed operation plan and job design will result in effective CSC jobs. For instance, the coil tubing packer is suggested for better resin placement in the formation. Moreover, accommodation arrangement (either barge or additional vessel) and logistics management still have room for improvement. These 3 wells are the evidences of the successful applications in Zawtika field. With good planning, lesson learned and further optimization, this CSC method can be beneficial for existing monobore wells, which required sand control and also will be the alternative sand control method for upcoming development phases. This CSC will be able to increase project economic and also unlock the marginal reservoirs those will not justify the higher cost of conventional gravel pack.
Low-permeability sandstone formations in deviated exploration wells were drilled and completed in 2013 in northeast Thailand. Reservoir simulation modeling indicated that a well would not produce as a result of the tight formation. Hydraulic fracturing was then considered, and a plan was adopted to use this method to improve the well's production using reservoir simulations. Microseismic fracture monitoring was implemented to correlate data with actual fracture propagation to understand the formation's geomechanics. The fracture design methods were combined with completion and cleanout strategies to help improve well performance. The fracturing design was incorporated into a complete operational procedure, along with contingency plans, a decision tree, and an integrated communication plan, to allow for possible contingencies. Careful planning, fluid testing, and a fit-for-purpose completion design resulted in a successful hydraulic fracturing operation. The microseismic equipment was installed and monitored during the fracturing operation to provide actual fracturing propagation noise signals. This paper presents the well fracturing technology, operational procedures, and microseismic technology used to better understand reservoir behavior and geomechanics characteristics. The geophone installation and surrounding control on location provided minimum noise interference for more accurate actual fracture propagation data. The computer program then forecasted fracture propagation. Comparisons between actual fracture propagation and the simulated fracture design allowed the operator to better understand subsurface parameters and characteristics for building the reservoir database. The operator was also able to forecast fracturing dimensions to help prevent water production zones. This significant reservoir information can be used for field development to maximize hydrocarbon production. Fracturing technology and seismic technology were combined to improve the probability of successful hydrocarbon production. Microseismic results demonstrated the actual fracturing plane dimensions and dynamic fracture propagation, and the fracturing computer program provided fracture simulation dimensions and direction. Combining these technologies allowed the operator to obtain more reservoir data for future field development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.