A series of xerogels based on sodium acrylate (SA), N,N-dimethyl(acrylamidopropyl) ammonium propane sulfonate (DMAAPS), and N,N-methylene bisacrylamide (NMBA) were prepared by inverse suspension polymerization. The water absorbency or swelling behavior for these xerogels in water or various saline solutions was investigated. Results obtained from this study revealed a water absorbency of 721 g H 2 O/g sample in deionized water and 83 g H 2 O/g sample in 0.9 wt % NaCl solution for a gel containing a 1.50 1 10 02 molar fraction of DMAAPS. The absorbency in the chloride salt solutions decreased with an increase in the ionic strength of the salt. For the same ionic strength of various salt solutions, the swelling amount had the following tendency: Co 2/ ú Ni 2/ ú Cu 2/ for the higher ionic strength of 2.44 1 10 05 -1.8 1 10
02M. The Co 2/ , Ni 2/ , and Cu 2/ solutions induce approximately the same degree of swelling at the lower ionic strength of õ2.44 1 10 05 M. The pH effect on the water absorbency for these xerogels was also investigated.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N-isopropylacrylamide, zwitterionic monomer, N,NЈ-dimethyl (acrylamidopropyl) ammonium propane sulfonate (DMAAPS), and N,NЈ-methylene-bis-acrylamide. The influence of the amount of DMAAPS in the copolymeric gels on the swelling behaviors in water, various saline solutions, and various temperatures was investigated. Results indicated that the higher the DMAAPS content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution results showed that, when the salt concentration was greater than the minimum salt concentration (MSC) of poly(DMAAPS), the deswelling behavior of the N-isopropylacrylamide gel was suppressed more effectively when more DMAAPS was added into the copolymeric gels; but the swelling ratios of the present copolymeric gels did not significantly change while the salt concentration was lower than the MSC of poly(DMAAPS). In addition, only the sample containing 12 mol % DMAAPS (D4) exhibited an antipolyelectrolyte's swelling behavior when the salt concentration was greater than the MSC of poly(DMAAPS). In other words, only when the amount of DMAAPS added into the gel is over some proportion, can the hydrogel show an antipolyelectrolyte's swelling behavior in concentrated salt solution. In saline solutions, the anion effects were greater than the cation effects in the presence of common anion (Cl Ϫ ) with different cations and common cation (K ϩ ) with different cations for these gels. Finally, the more DMAAPS content in the hydrogel, the higher the diffusion coefficient in dynamic swelling.
A series of thermoreversible hydrogels are prepared from the various molar ratios of N,N-dimethylacrylamide (DMA), n-butoxymethyl acrylamide (nBMA), and N,N-methylenebisacrylamide (NMBA). The influences of the amount of DMA in the copolymeric gels, temperature, and polymerization media on the swelling behaviors in water are investigated. Results indicate that the higher the DMA content in the hydrogel systems the higher the swelling ratio and the gel transition temperature. The effects of the gel thickness on the swelling ratio for DMA/nBMA copolymeric gels indicate that the equilibrium swelling time and diffusion coefficient for the thinner gel (1.5 mm) from the dried state to the completely swollen state are obviously faster than are those for the thicker gels (2.0 and 3.5 mm). The effects of the different polymerization media on the swelling ratio for DMA/nBMA copolymeric gels also show that the larger the solvent molecular size and the poor miscibility of the monomer and solvent the higher the swelling ratio and the diffusion coefficient. The drug release in these copolymeric gel systems are also investigated.
A thermoreversible hydrogel, poly(N-tetrahydrofurfurylacrylamide) [poly-(NTHFAAm) gel], was prepared from N-tetrahydrofurfurylacrylamide, which was synthesized from N-tetrahydrofurfurylamine and acryloyl chloride (through acylation), with N,N-methylenebisacrylamide, a crosslinker, in various aqueous solutions. The influences of temperature, gel thickness, and polymerization media on the swelling behaviors in water were investigated. The effect of the gel thickness on the swelling ratio for NTHFAAm gel indicated that the equilibrium swelling time and diffusion coefficient for the thinner gel were faster than those for the thicker gels. The effects of different polymerization media on the gel swelling ratio showed that the larger the solvent molecular size and the poorer the miscibility of the monomer and solvent, the higher the swelling ratio and diffusion coefficient. The drug release profiles in the various gels were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.