We create squeezed light by exploiting the quantum nature of the mechanical
interaction between laser light and a membrane mechanical resonator embedded in
an optical cavity. The radiation pressure shot noise (fluctuating optical force
from quantum laser amplitude noise) induces resonator motion well above that of
thermally driven motion. This motion imprints a phase shift on the laser light,
hence correlating the amplitude and phase noise, a consequence of which is
optical squeezing. We experimentally demonstrate strong and continuous
optomechanical squeezing of 1.7 +/- 0.2 dB below the shot noise level. The peak
level of squeezing measured near the mechanical resonance is well described by
a model whose parameters are independently calibrated and that includes thermal
motion of the membrane with no other classical noise sources.Comment: 12 pages, 8 figure
We study the mechanical quality factors of bilayer aluminum-silicon-nitride membranes. By coating ultrahigh-Q Si(3)N(4) membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si(3)N(4) membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces.
The radiation pressure of light can act to damp and cool the vibrational motion of a mechanical resonator. In understanding the quantum limits of this cooling, one must consider the effect of shot noise fluctuations on the final thermal occupation. In optomechanical sideband cooling in a cavity, the finite Stokes Raman scattering defined by the cavity linewidth combined with shot noise fluctuations dictates a quantum backaction limit, analogous to the Doppler limit of atomic laser cooling. In our work we sideband cool to the quantum backaction limit by using a micromechanical membrane precooled in a dilution refrigerator. Monitoring the optical sidebands allows us to directly observe the mechanical object come to thermal equilibrium with the optical bath.
A phononic crystal can control the acoustic coupling between a resonator and
its support structure. We micromachine a phononic bandgap shield for high Q
silicon nitride membranes and study the driven displacement spectra of the
membranes and their support structures. We find that inside observed bandgaps
the density and amplitude of non-membrane modes are greatly suppressed, and
membrane modes are shielded from an external mechanical drive by up to 30 dB.Comment: 5 pages, 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.