American bothropoids comprise a monophyletic and greatly diverse group of pitvipers that were initially included in the genus Bothrops and later assigned to five genera. Until recently, most phylogenetic analyses of bothropoids used exclusively mitochondrial DNA sequences, whereas few of them have included morphological traits. Moreover, the systematic affinities of some species remain unclear. In this study, we performed a parsimony analysis of morphological data obtained from the examination of 111 characters related to lepidosis, colour pattern, osteology, and hemipenial morphology of 35 of the 48 species that compose the bothropoid group. The morphological data analysed contain novel information about several species, including the incertae sedis. Morphology was analysed separately and combined with 2393 molecular characters obtained from published sequences of four mitochondrial genes. Five characters of the ecology were also included. A sensitivity analysis was performed using different weighting criteria for the characters. The congruence among different sources of evidence was evaluated through partitioned and total evidence analyses, the analyses of reduced datasets and the use of incongruence length difference test. With few exceptions, results showed groups of species similar to those obtained in previous studies; however, incongruences between morphological and molecular characters, and within the molecular partition, were revealed. This conflict affects the relationship between particular groups of species, leading to alternative phylogenetic hypotheses for bothropoids: hierarchical radiation or two major lineages within the group. The results also showed that Bothrops sensu stricto is paraphyletic. We discuss previous taxonomic approaches and, considering both phylogenetic hypotheses, we propose an arrangement that rectifies the paraphyly of Bothrops: maintaining Bothrocophias, assigning Bothrops andianus to this genus; and recognising the sister clade as Bothrops, synonymising Bothriopsis, Bothropoides and Rhinocerophis.
We describe a new species of pitviper of the genus Bothrops from the Peruvian Pampas del Heath, in the Bahuaja-Sonene National Park. Pampas del Heath is an area of seasonally flooded savannas and a northwestern extension of the Gran Chaco Boliviano-Paraguayo. The new species is easily distinguished from its congeners by the exclusive combination of dorsal color pattern of body consisting of small C-shaped blotches, postocular stripe originating posteriorly to the eye, covering posterior supralabials, dorsum of the head with paired markings arranged symmetrically, venter cream heavily speckled with brown, prelacunal scale discrete in contact with second supralabial, three to five prefoveals, subfoveal single usually present, postfoveals absent to two, canthals two, seven intersupraoculars, one or two suboculars, two or three postoculars, seven or eight supralabials, nine to eleven infralabials, 26–27 interrictals, 23–25 middorsal scales, 172 ventrals in the female and 169–173 in males, 45 subcaudals in the female and 50 in males. We performed separate and combined phylogenetic analyses based on morphology and five mitochondrial genes and recovered the new species as a member of the Bothrops neuwiedi species group. All lineages of this clade inhabit the South American dry diagonal. This novel species of pitviper increases the known diversity of the genus Bothrops and adds to the number of described taxa from the unique and scarcely known ecosystem of Pampas del Heath.
Based on the literature, we had predicted that the diversification within the Neotropical snake genus Bothrops occurred along a latitudinal gradient from north to south, with diversification into unoccupied niches through ecological opportunity, not correlated with geoclimatic events. Using a dated phylogeny and estimating likelihoods of ancestral states at cladogenesis events, we reconstructed ancestral areas and assessed major events of the diversification of Bothrops clades, and we also discuss systematic implications for this group. Based on the phylogeny we produced, B. lojanus was not considered as part of the genus Bothrops since the results recovered this species nested within the Bothrocophias clade. We infer that the diversification of the Miocene Bothrops pictus and Bothrops alternatus clades may be related to the uplift of the western slopes of the Andes and the Argentinian Patagonian Andes, respectively. The Pliocene Bothrops taeniatus and Bothrops osbornei clades may be related to the uplift of the eastern and northern Andes, respectively. The Plio‐Pleistocene Bothrops neuwiedi clade may be related to the habitat transitions from a warmer and forested environment to a cooler and open landscape; the Bothrops jararaca (i.e. island endemic species) and Bothrops lanceolatus clades to over‐water dispersal with island speciation; and Bothrops atrox clade to the appearance of the Panamanian land bridge. We found that a multitemporal and multidirectional history of diversification may be correlated with geoclimatic and dispersalist events. We argue that the vacant niche hypothesis by itself does not explain Bothrops diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.