Background: Previous studies of migraine classification have focused on the analysis of brain waves, leading to the development of complex tests that are not accessible to the majority of the population. In the early stages of this pathology, patients tend to go to the emergency services or outpatient department, where timely identification largely depends on the expertise of the physician and continuous monitoring of the patient. However, owing to the lack of time to make a proper diagnosis or the inexperience of the physician, migraines are often misdiagnosed either because they are wrongly classified or because the disease severity is underestimated or disparaged. Both cases can lead to inappropriate, unnecessary, or imprecise therapies, which can result in damage to patients’ health. Methods: This study focuses on designing and testing an early classification system capable of distinguishing between seven types of migraines based on the patient’s symptoms. The methodology proposed comprises four steps: data collection based on symptoms and diagnosis by the treating physician, selection of the most relevant variables, use of artificial neural network models for automatic classification, and selection of the best model based on the accuracy and precision of the diagnosis. Results: The artificial neural network models used provide an excellent classification performance, with accuracy and precision levels >97% and which exceed the classifications made using other model, such as logistic regression, support vector machines, nearest neighbor, and decision trees. Conclusions: The implementation of migraine classification through artificial neural networks is a powerful tool that reduces the time to obtain accurate, reliable, and timely clinical diagnoses.
La revista Investigación e Innovación en Ingenierías nace en 2013 como un medio para fomentar la cultura de divulgación de trabajos académicos por parte de los profesores de los tres programas de pregrado en ingeniería y dos de posgrado con los que en ese entonces contaba la Universidad Simón Bolívar. Dicha actividad investigativa empezada a tomar forma y a convertirse en parte del quehacer permanente de los profesores. El reto para ese entonces fue grande, toda vez que, no había un reconocimiento interno por parte de la comunidad universitaria y no existía una cultura de publicación; no obstante, se logró salir adelante.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.