Background: The discovery of the Mirror Neuron System has promoted the development of Action Observation Therapy (AOT) to improve motor and functional abilities in patients with Parkinson's disease (PD). This innovative approach involves observing video-clips showing motor contents, which may vary across the studies influencing AOT efficacy. To date, no studies have systematically summarized the effects of AOT in patients with PD on motor and functional outcomes, underlining the characteristics of visual stimuli in relation to their efficacy. Objectives: To describe the potential benefits of AOT in patients with PD and discuss the characteristics of visual stimuli used in clinical studies in relation to their efficacy. Methods: A systematic literature search was carried out using MEDLINE via PubMed, EMBASE, Scopus, and PEDro, from inception until March 2020. Randomized controlled trials that investigated the effects of AOT on motor and functional recovery in patients with PD were included. Two independent reviewers appraised the records for inclusion, assessed the methodological quality, and extracted the following data: number and characteristics of participants, features and posology of the treatments, outcome measures at each follow-up, and main results. Findings were aggregated into a quantitative synthesis (mean difference and 95% confidence interval) for each time point. Results: Overall, 7 studies (189 participants) with a mean PEDro score of 6.1 (range: 4-8) points were selected. Included studies revealed AOT as effective in improving walking ability and typical motor signs (i.e., freezing of gait and bradykinesia) in patients with PD. Moreover, when this approach incorporated ecological auditory stimuli, changes to functional abilities and quality of life were also induced, which persisted up to 3 months after treatment. However, included studies adopted AOT stimuli with heterogeneous posology (from a single session to 8 weeks) and characteristics of motor contents might be responsible for different motor and functional recovery (person-related and viewing perspectives, transitive or intransitive actions, healthy subjects or patients, and association or not with imitation). Temporiti et al. Action Observation in Parkinson's Disease Conclusions: AOT leads to improvements in motor and functional abilities in patients with PD and the characteristics of visual stimuli may play a role in determining AOT effects, deserving further investigations.
Somatosensory discrimination training may modulate cognitive processes, such as movement planning and monitoring, which can be useful during active movements. The aim of the study was to assess the effect of somatosensory discrimination training on brain functional activity using functional magnetic resonance imaging (fMRI) during motor and sensory tasks in healthy subjects. Thirty-nine healthy young subjects were randomized into two groups: the experimental group underwent somatosensory discrimination training consisting of shape, surface and two-point distance discrimination; and the control group performed a simple object manipulation. At baseline and after 2 weeks of training, subjects underwent sensorimotor evaluations and fMRI tasks consisting of right-hand tactile stimulation, manipulation of a simple object, and complex right-hand motor sequence execution. Right-hand dexterity improved in both groups, but only the experimental group showed improvements in all manual dexterity tests. After training, the experimental group showed: decreased activation of the ipsilateral sensorimotor areas during the tactile stimulation task; increased activation of the contralateral postcentral gyrus and thalamus bilaterally during the manipulation task; and a reduced recruitment of the ipsilateral pre/postcentral gyri and an increased activation of the basal ganglia and cerebellum contralaterally during the complex right-hand motor task. In healthy subjects, sensory discrimination training was associated with lateralization of brain activity in sensorimotor areas during sensory and motor tasks. Further studies are needed to investigate the usefulness of this training in motor rehabilitation of patients with focal lesions in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.