The main objective of this study was to evaluate the feasibility of developing multivariate models to estimate physico-chemical characteristics and antioxidant content of extra virgin olive oil from fluorescence spectra obtained at specific excitation wavelengths. Six replicates of each extra virgin olive oil sample were contained in clear glass bottles. Two replicates were subjected to four weeks of natural indirect light; two bottles for two days; and the third couple were kept it in darkness as a control. For each pair, one bottle was used for spectroscopic measurements and the other was sent to an accredited external laboratory to obtain physico-chemical measurements: acidity, peroxide index, K270, K232, total tocopherols, α-tocopherol, β-tocopherol and γ-tocopherol. Fluorescence emission spectra were acquired at different excitation wavelengths: 326 nm, 350 nm and 365 nm and partial least squares regression (PLSR) models were developed. The highest R2 values were found for excitation at 350 nm, reaching almost 0.9 in most of the parameters.
There is growing interest within the peach and nectarine markets in obtaining and selling ready-to-eat fruits. For this, pre-ripening protocols are being applied, which do not always result in sufficiently juicy fruits. Therefore, the aim of this study is the development of objective instrumental procedures for quantification of the juiciness attributes of these fruits. In this work, we evaluated the juiciness of more than 2000 fruits belonging to 20 of the varieties of greatest interest in the southeast of Spain. An instrumental mechanical procedure based on the confined compression of a pulp specimen of known volume was designed and optimized. Instrumental juiciness was defined as the wet area (cm2) on an absorbent paper located under the compression probe. This test allowed for the defining of objective thresholds for the identification of juicy fruits; 90% of the fruits with areas higher than 5.4 cm2 were considered to be juicy. Complementarily, non-invasive supervision by near-infrared (NIR) spectroscopy, based on pulp structural changes during ripening, allowed for estimation of the instrumental juiciness with coefficients of correlation above 0.83. The results of these instrumental procedures contribute to supporting decision tools in the logistics chain of stone fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.