Loss of articular cartilage through injury or disease presents major clinical challenges also because cartilage has very poor regenerative capacity, giving rise to the development of biological approaches. As autologous blood product, platelet-rich plasma (PRP) provides a promising alternative to surgery by promoting safe and natural healing. Here we tested the possibility that PRP might be effective as an anti-inflammatory agent, providing an attractive basis for regeneration of articular cartilage, and two principal observations were done. First, activated PRP in chondrocytes reduced the transactivating activity of NF-kB, critical regulator of the inflammatory process, and decreased the expression of COX2 and CXCR4 target genes. By analyzing a panel of cytokines with different biological significance, in activated PRP we observed increases in hepatocyte growth factor (HGF), interleukin-4 and tumor necrosis factor-α (TNF-α). HGF and TNF-α, by disrupting NF-kB-transactivating activity, were important for the anti-inflammatory function of activated PRP. The key molecular mechanisms involved in PRP-inhibitory effects on NF-kB activity were for HGF the enhanced cellular IkBα expression, that contributed to NF-kB-p65 subunit retention in the cytosol and nucleo-cytoplasmic shuttling, and for TNF-α the p50/50 DNA-binding causing inhibition of target-gene expression. Second, activated PRP in U937-monocytic cells reduced chemotaxis by inhibiting chemokine transactivation and CXCR4-receptor expression, thus possibly controlling local inflammation in cartilage. In conclusion, activated PRP is a promising biological therapeutic agent, as a scaffold in micro-invasive articular cartilage regeneration, not only for its content of proliferative/differentiative growth factors, but also for the presence of anti-inflammatory agents including HGF.
Hepatocyte growth factor (HGF)/Met system is deregulated in tumors and is implicated in different aspects of invasive growth. Here, we report that in the highly aggressive MDA-MB231 breast carcinoma cells, Met cytosolic fragments [C-terminal fragment (CTF)] were present in the nuclei. They were constitutively active because tyrosine phosphorylated at regulatory and catalytic domains and endowed with transactivating activity independently of HGF exposure. In fact, various constructs containing juxtamembrane (Jxtm) Met fragments, fused with Gal4 DNA-binding domain, transactivated Gal4Luc activity. MDA-MB231 cells were devoid of WW domain-containing oxidoreductase (Wwox) tumor suppressor. Exogenous Wwox protein expression negatively regulated Jxtm3-transactivating activity and decreased spontaneous migration of MDA-MB231 cells. Also, we demonstrate that the lack of endogenous Wwox in MDA-MB231 cells represented a molecular mechanism for intranuclear Met-CTF accumulation and for the decrease of full-length Met stability. Yes-associated proteins maintained constitutively activated nuclear Met fragments that played a role as transcription factors regulating genes probably including those for motile phenotype. The difference with low invasive MCF-7 cells was evident because the latter did not show intranuclear Met and the transfected constructs-containing Jxtm fragments were inactive also in the presence of HGF. The constitutive activation of nuclear Met-signaling pathway in MDA-MB231 cells, possibly determined at genetic or epigenetic levels of WWOX gene, might participate in breast carcinoma progression influencing invasive/metastatic phenotype. Wwox/Met system can be suggested as a potential target to impair breast carcinoma progression.
We have investigated the involvement of MAP kinase cascades in the response of the liver to post-ischemic reperfusion. Both JNKs and ERKs are activated but the duration and magnitude of the increase in their activities appear to be different. JNK activation is more marked but shorter than that of ERKs. The increase observed in the phosphotyrosine content of the 52 kDa Shc protein, accompanied by an increased amount of co-immunoprecipitated Grb2, and the activation of Raf-1 kinase provide evidence of the involvement of a Ras-Rafdependent pathway, with a time course that is similar to that of ERK activation. The treatment of rats with IL-1 receptor antagonist modified all of the described effects, suggesting that IL-1 plays a role in the response of the liver to reperfusion.
CXCR4 is a chemokine receptor probably involved in the homing of metastatic breast cancer, and its expression is modulated by tumor environmental stimuli such as hepatocyte growth factor (HGF) and hypoxia. Here, we demonstrate that, depending on the stimulus, different transcription factors can cooperate in enhancing CXCR4 transcription in MCF-7 breast cancer cell line. In HGF-treated MCF-7 cells, the DNA binding of Ets1 activated by MAPK1/ERK1/2 transduction pathway as well as the DNA binding of NF-kappaB played a critical role in CXCR4 transcription and protein induction. Under HGF stimulation, the blockade of these transcription factors by dominant negatives and inhibitors prevented the expression of CXCR4 receptor, the activity of a gene reporter driven by CXCR4 promoter sequence and the chemoinvasion toward the CXCL12 ligand. NF-kappaB was activated also by hypoxia and contributed, with HIF-1, to the increase in CXCR4 expression. The results suggest that Ets1, specifically activated by HGF, might cooperate with NF-kappaB activity to enhance the invasive/metastatic phenotype of breast carcinoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.