Abstract. This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004).To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content.We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO-2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris-flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities.After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening.
The installation of draped meshes, metallic nets installed in such a way as to lie against the rock slope surface, is one of the most common ways to protect roads and infrastructure against the detachment of small rock elements in areas prone to rock fall. Despite their frequent and worldwide application, there are no universally recognized guidelines or technical standards to help engineers in their correct design, and no full-scale test results are available where the whole system, composed of several interacting structural components, is tested. In this paper, a full-scale test procedure, which is able to permit the evaluation of the global behaviour of a draped mesh, is described and the results of tests carried out on widely used meshes are presented and discussed.
Three debris-flow simulation model software have been applied to the back analysis of a typical alpine debris flow that caused significant deposition on an urbanized alluvial fan. Parameters used in the models were at first retrieved from the literature and then adjusted to fit field evidence. In the case where different codes adopted the same parameters, the same input values were used, and comparable outputs were obtained. Results of the constitutive laws used (Bingham rheology, Voellmy fluid rheology and a quadratic rheology formulation which adds collisional and turbulent stresses to the Bingham law) indicate that no single rheological model appears to be valid for all debris flows. The three applied models appear to be capable of reasonable reproduction of debris-flow events, although with different levels of detail. The study shows how different software can be used to predict the debris-flow motion for various purposes from a first screening, to predict the runout distance and deposition of the solid material and to the different behaviour of the mixtures of flows with variation of maximum solid concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.