Our data confirm and strengthen the role of this variant.
The recent global COVID-19 public health emergency is caused by SARS-CoV-2 infections and can manifest extremely variable clinical symptoms. Host human genetic variability could influence susceptibility and response to infection. It is known that ACE2 acts as a receptor for this pathogen, but the viral entry into the target cell also depends on other proteins. The aim of this study was to investigate the variability of genes coding for these proteins involved in the SARS-CoV-2 entry into the cells. We analyzed 131 COVID-19 patients by exome sequencing and examined the genetic variants of TMPRSS2, PCSK3, DPP4, and BSG genes. In total we identified seventeen variants. In PCSK3 gene, we observed a missense variant (c.893G>A) statistically more frequent compared to the EUR GnomAD reference population and a missense mutation (c.1906A>G) not found in the GnomAD database. In TMPRSS2 gene, we observed a significant difference in the frequency of c.331G>A, c.23G>T, and c.589G>A variant alleles in COVID-19 patients, compared to the corresponding allelic frequency in GnomAD. Genetic variants in these genes could influence the entry of the SARS-CoV-2. These data also support the hypothesis that host genetic variability may contribute to the variability in infection susceptibility and severity.
Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.
Background Coronaviruses (CoV) are a large family of viruses that are common in humans and many animal species. Animal coronaviruses rarely infect humans with the exceptions of the Middle East respiratory syndrome (MERS-CoV), the severe acute respiratory syndrome corona virus (SARS-CoV), and now SARS-CoV-2, which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Several studies suggested that genetic variants in the ACE2 gene may influence the host susceptibility or resistance to SARS-CoV-2 infection according to the functional role of ACE2 in human pathophysiology. However, many of these studies have been conducted in silico based on epidemiological and population data. We therefore investigated the occurrence of ACE2 variants in a cohort of 131 Italian unrelated individuals clinically diagnosed with COVID-19 and in an Italian control population, to evaluate a possible allelic association with COVID-19, by direct DNA analysis. Methods As a pilot study, we analyzed, by whole-exome sequencing, genetic variants of ACE2 gene in 131 DNA samples of COVID-19 patients hospitalized at Tor Vergata University Hospital and at Bambino Gesù Children’s Hospital, Rome. We used a large control group consisting of 1000 individuals (500 males and 500 females). Results We identified three different germline variants: one intronic c.439+4G>A and two missense c.1888G>C p.(Asp630His) and c.2158A>G p.(Asn720Asp) in a total of 131 patients with a similar frequency in male and female. Thus far, only the c.1888G>C p.(Asp630His) variant shows a statistically different frequency compared to the ethnically matched populations. Therefore, further studies are needed in larger cohorts, since it was found only in one heterozygous COVID-19 patient. Conclusions Our results suggest that there is no strong evidence, in our cohort, of consistent association of ACE2 variants with COVID-19 severity. We might speculate that rare susceptibility/resistant alleles could be located in the non-coding regions of the ACE2 gene, known to play a role in regulation of the gene activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.