The cyclopoid copepod Limnoithona tetraspina (Oithonidae) was introduced into the San Francisco Estuary (SFE) in 1993 and within a year became the most abundant copepod in the low-salinity zone. L. tetraspina makes up ~95% (median) of the total adult copepods in the lowsalinity zone, and the biomass of adults is similar to that of 2 larger co-occurring calanoids, Pseudodiaptomus forbesi and Eurytemora affinis. The main goal of our research was to understand which food resources L. tetraspina uses in the low-salinity region of the SFE. Incubation experiments using natural water revealed feeding by L. tetraspina on mixotrophic and heterotrophic aloricate ciliates, but rarely on loricate tintinnids or diatoms. The co-occurring calanoids consumed similar prey, but also readily consumed diatoms. Capture and consumption of Strombidium spp. by L. tetraspina was confirmed visually, and experiments using cultured prey also showed that these copepods fed on motile phytoplankton but not on diatoms. Estimated grazing rates were low (median 2.3, range 0.6 to 8.3% body weight d -1
Large carnivores have experienced widespread extirpation and species are now threatened globally. The ecological impact of the loss of large carnivores has been prominent in Gorongosa National Park, Mozambique, after most were extirpated during the 1977–92 civil war. To remedy this, reintroductions are now being implemented in Gorongosa, initiating with endangered African wild dogs (Lycaon pictus), hereafter ‘wild dogs’. We describe the first transboundary translocation and reintroduction of founding packs of wild dogs to Gorongosa over a 28-month study period and evaluate the success of the reintroduction based on five key indicator categories. We also assess how wild dog space use and diet influenced their success. We found that pre-release, artificial pack formation in holding enclosures aided group cohesion and alpha pair establishment. Post-release, we also observed natural pack formations as a result of multiple dispersal events. Founder and naturally formed packs produced pups in two of the three breeding seasons and packs successfully recruited pups. Survival rate for all wild dogs was 73% and all mortality events were from natural causes. Consequently, the population grew significantly over the study period. All indicators of success were fully achieved and this study documents the first successful reintroduction of wild dogs into a large, unfenced landscape in Mozambique and only the second on the continent. Potential mechanisms underlying these early successes were the avoidance of habitats intensively used by lions, dietary partitioning with lion, avoidance of human settlements, and Gorongosa’s management strategy. We predict further population expansion in Gorongosa given that 68% of the park is still unused by wild dogs. This expansion could be stimulated by continued reintroductions over the short- to medium-term. Recovery of wild dogs in Gorongosa could aid in the re-establishment of a larger, connected population across the greater Gorongosa-Marromeu landscape.
Mesocarnivores constitute a diverse and often abundant group of species, which are increasingly occupying hweigher trophic levels within multi‐use landscapes. Yet, we know relatively little about their interactions with each other, especially in human‐altered areas. Using camera trap data collected in a forestry concession in the Greater Gorongosa ecosystem of central Mozambique, we examined the spatiotemporal relationships and potential for intraguild competition among three understudied African carnivores: African civets (Civettictis civetta), bushy‐tailed mongooses (Bdeogale crassicauda), and large‐spotted genets (Genetta maculata). After accounting for habitat preferences and tolerance to anthropogenic factors, we found that African civets and bushy‐tailed mongooses avoid each other spatially and temporally. Additionally, civets and mongooses were also both more likely to use sites farther away from human settlements, possibly decreasing the total available habitat for each species if competition is driving this spatial partitioning. In contrast, we did not find evidence for spatial or temporal partitioning between large‐spotted genets and African civets, but bushy‐tailed mongooses altered their activity patterns where they co‐occurred with genets. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human‐altered ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.