In vitro tissue engineering is investigated as a potential source of functional tissue constructs for cartilage repair, as well as a model system for controlled studies of cartilage development and function. Among the different kinds of devices for the cultivation of 3D cartilage cell colonies, we consider here polymeric scaffold-based perfusion bioreactors, where an interstitial fluid supplies nutrients and oxygen to the growing biomass. At the same time, the fluid-induced shear acts as a physiologically relevant stimulus for the metabolic activity of cells, provided that the shear stress level is appropriately tuned. In this complex environment, mathematical and computational modeling can help in the optimal design of the bioreactor configuration. In this perspective, we propose a computational model for the simulation of the biomass growth, under given inlet and geometrical conditions, where nutrient concentration, fluid dynamic field and cell growth are consistently coupled. The biomass growth model is calibrated with respect to the shear stress dependence on experimental data using a simplified short-time analysis in which the nutrient concentration and the fluid-induced shear stress are assumed constant in time and uniform in space. Volume averaging techniques are used to derive effective parameters that allow to upscale the microscopic structural properties to the macroscopic level. The biomass growth predictions obtained in this way are significant for long times of culture.
In this work we present a mathematical model for the coupling between biomechanics and hemodynamics in the lamina cribrosa, a thin porous tissue at the base of the optic nerve head which is thought to be the site of injury in ocular neurodegenerative diseases such as glaucoma. In this exploratory two-dimensional investigation, the lamina cribrosa is modeled as a poroelastic material where blood vessels are viewed as pores in a solid elastic matrix. The model is used to investigate the influence on the distributions of stress, blood volume fraction (or vascular porosity) and blood velocity within the lamina cribrosa due to the application of different levels of the intraocular pressure (IOP) and the enforcement of different mechanical constraints at the lamina's boundary. The model simulations suggest that the degree of fixity of the boundary constraint strongly influences the lamina's response to IOP elevation. Specifically, when the boundary is mechanically clamped, IOP elevation leads to an increase in stress close to the lamina's boundary, making it more susceptible to tissue damage. On the other hand, when rotations are allowed at the boundary, the most vulnerable region appears to be located at the lamina's central axis, in proximity of the eye globe, where increased stress and reduced vascular porosity and blood velocity are predicted for increased levels of IOP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.