The present paper follows the computational approach to 3-manifold classification via edge-colored graphs, already performed in [1] (with respect to orientable 3-manifolds up to 28 colored tetrahedra), in [2] (with respect to non-orientable 3-manifolds up to 26 colored tetrahedra), in [3] and [4] (with respect to genus two 3-manifolds up to 34 colored tetrahedra): in fact, by automatic generation and analysis of suitable edge-colored graphs, called crystallizations, we obtain a catalogue of all orientable 3-manifolds admitting colored triangulations with 30 tetrahedra. These manifolds are unambiguously identified via JSJ decompositions and fibering structures. It is worth noting that, in the present work, a suitable use of elementary combinatorial moves yields an automatic partition of the elements of the generated crystallization catalogue into equivalence classes, which turn out to be in one-to-one correspondence with the homeomorphism classes of the represented manifolds.
We describe an algorithm to subdivide automatically a given set of PL n-manifolds (via coloured triangulations or, equivalently, via crystallizations) into classes whose elements are PL-homeomorphic. The algorithm, implemented in the case n = 4, succeeds to solve completely the PL-homeomorphism problem among the catalogue of all closed connected PL 4-manifolds up to gem-complexity 8 (i.e., which admit a coloured triangulation with at most 18 4-simplices).Possible interactions with the (not completely known) relationship among the different classifications in the TOP and DIFF=PL categories are also investigated. As a first consequence of the above PL classification, the non-existence of exotic PL 4-manifolds up to gem-complexity 8 is proved. Further applications of the tool are described, related to possible PL-recognition of different triangulations of the K3-surface.
We present the census of all non-orientable, closed, connected 3-manifolds admitting a rigid crystallization with at most 30 vertices. In order to obtain the above result, we generate, manipulate and compare, by suitable computer procedures, all rigid nonbipartite crystallizations up to 30 vertices.2000 Mathematics Subject Classification: 57Q15, 57M15, 57N10.
The aim of this paper is twofold. On the one hand, it provides a review of the links between random tensor models, seen as quantum gravity theories, and the PL-manifolds representation by means of edge-colored graphs (crystallization theory). On the other hand, the core of the paper is to establish results about the topological and geometrical properties of the Gurau-degree (or G-degree) of the represented manifolds, in relation with the motivations coming from physics.\ud In fact, the G-degree appears naturally in higher dimensional tensor models as the quantity driving their 1/N expansion, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting.\ud In particular, the G-degree of PL-manifolds is proved to be finite-to-one in any dimension, while in dimension 3 and 4 a series of classification theorems are obtained for PL-manifolds represented by graphs with a fixed G-degree.\ud All these properties have specific relevance in the tensor models framework, showing a direct fruitful interaction between tensor models and discrete geometry, via crystallization theory
By means of a slight modification of the notion of GM-complexity introduced in [Casali, M.R., Topol. Its Appl., 144: 201-209, 2004], the present paper performs a graph-theoretical approach to the computation of (Matveev's) complexity for closed orientable 3-manifolds. In particular, the existing crystallization catalogue C 28 available in [Lins, S., Knots and Everything 5, World Scientific, Singapore, 1995] is used to obtain upper bounds for the complexity of closed orientable 3-manifolds triangulated by at most 28 tetrahedra. The experimental results actually coincide with the exact values of complexity, for all but three elements. Moreover, in the case of at most 26 tetrahedra, the exact value of the complexity is shown to be always directly computable via crystallization theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.