We have developed a physically self-consistent model of the disk around the nearby 10 Myr old star TW Hya which matches the observed spectral energy distribution and 7mm images of the disk. The model requires both significant dust size evolution and a partially-evacuated inner disk region, as predicted by theories of planet formation. The outer disk, which extends to at least 140 AU in radius, is very optically thick at infrared wavelengths and quite massive (∼ 0.06M ⊙ ) for the relatively advanced age of this T Tauri star. This implies long viscous and dust evolution timescales, although dust must have grown to sizes of order ∼ 1 cm to explain the sub-mm and mm spectral slopes. In contrast, the negligible near-infrared excess emission of this system requires that the disk be optically thin inside ∼ < 4 AU. This inner region cannot be completely evacuated; we need ∼ 0.5 lunar mass of ∼ 1 µm particles remaining to produce the observed 10µm silicate emission. Our model requires a distinct transition in disk properties at ∼ 4 AU, separating the inner and outer disk. The inner edge of the optically-thick outer disk must be heated almost frontally by the star to account for the excess flux at mid-infrared wavelengths. We speculate that this truncation of the outer disk may be the signpost of a developing gap due to the effects of a growing protoplanet; the gap is still presumably evolving because material still resides in it, as indicated by the silicate emission, the molecular hydrogen emission, and by the continued accretion onto the central star (albeit at a much lower rate than typical of younger T Tauri stars). TW Hya thus may become the Rosetta stone for our understanding of the evolution and dissipation of protoplanetary disks.
We present mid-infrared spectra of T Tauri stars in the Taurus star-forming region obtained with the Spitzer Infrared Spectrograph ( IRS). For the first time, the 5-36 m spectra of a large sample of T Tauri stars belonging to the same star-forming region is studied, revealing details of the mid-infrared excess due to dust in circumstellar disks. We analyze common features and differences in the mid-IR spectra based on disk structure, dust grain properties, and the presence of companions. Our analysis encompasses spectral energy distributions from the optical to the far-infrared, a morphological sequence based on the IRS spectra, and spectral indices in IRS wave bands representative of continuum emission. By comparing the observed spectra to a grid of accretion disk models, we infer some basic disk properties for our sample of T Tauri stars and find additional evidence for dust settling.
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30-day multiwavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes, and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" having discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Subject headings:Electronic address: amc@ipac.caltech.edu * Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA's RSSD
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.