Whole grain wheat flour (WG) of three different particles sizes (194.9, 609.4, and 830.0 µm) was prepared by milling whole grain. The effect of particle size on the thermo-mechanical properties of flour was investigated using Mixolab equipment and solvent retention capacity (SRC). The results showed that particle size influences the functionality of the gluten network. The SRC test revealed that the water absorption increased from 77.43% to 85.76%, with decrease in particle size. The C2 (protein weakening) values were correlated with the values for water absorption in the SRC and wet gluten test, respectively. The degree of gelatinization of starch (C3) showed that the presence of the fibers in the WG samples limited the availability of water to the starch, and this effect was especially true for flour with smaller particle size. In summary, the Mixolab equipment allowed a better understanding of the functionality of WG with regard to the behavior of protein properties. WG with coarse particles demonstrated a greater impact on the gluten network, indicating a negative effect on the baking quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.