This paper reviews the terms and major criteria used to define and limit the pollen season. Pollen data from Cordoba (Spain), Ourense (Spain) and Bologna (Italy) were used to ascertain the extent to which aerobiological results and pollen curves are modified by the criteria selected. Results were analysed using SpearmanÕs correlation test. Phenological observations were also used to determine synchronization between pollen curves and plant phenology. The criteria for limiting the shortest and longest pollen season periods, as well as the earliest and latest start and end dates, varied according to the city and the taxon under study; in many cases, results for a given taxon also depended on the year. The smallest differences were obtained for Platanus and the greatest for Poaceae.
The presence of the aeroallergen Pla a 1 in the atmosphere appears to be independent of Platanus pollen counts over the same period, which may be contributing to allergic symptoms and sensitization. The number of polysensitized patients displaying allergy to Platanus suggested that allergic symptoms were caused by co-sensitization or cross-reactivity involving a number of allergenic particles.
Some studies suggested a role of the atmospheric particulate matter (PM) and of its oxidative potential (OP) in determining adverse health effects. Several works have focused on characterisation of source contributions to PM OP, mainly using three approaches: correlation between OP and chemical markers of specific sources; use of OP as input variable in source apportionment with receptor models; and multi-linear regression (MLR) between OP and source contributions to PM obtained from receptor models. Up to now, comparison of results obtained with different approaches on the same dataset is scarce. This work aims to perform a OP study of PM2.5 collected in an industrial site, located near a biogas production and combustion plant (in southern Italy), comparing different approaches to investigate the contributions of the different sources to OP. The PM2.5 samples were analysed for determining ions, metals, carbonaceous components, and OP activity with the DTT (dithiotreitol) assay. Results showed that OP normalised in volume (DTTV) is correlated with carbonaceous components and some ions (NO3−, and Ca2+) indicating that PM of combustion, secondary, and crustal origin could contribute to the OP activity. The source apportionment, done with the Environmental Protection Agency (EPA)—Positive Matrix Factorization (PMF5.0) model, identified six sources: secondary sulphate; biomass burning; industrial emissions; crustal; vehicle traffic and secondary nitrate; and sea spray. A MLR analysis between the source’s daily contributions and the daily DTTV values showed a reasonable agreement of the two approaches (PMF and MLR), identifying the biomass burning and the vehicle traffic and secondary nitrate as the main sources contributing to DTTV activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.