Banded Ca-carbonate veins in travertine deposits are efficient recorders of the compositional fluctuations of geothermal fluids flowing (or flowed) from deep reservoirs up to the surface, within fault zones. In this view, these veins represent key tools for decoding those factors that influenced the geochemical variations. We have analyzed veins developed in fractures channeling geothermal fluids forming travertine deposits. The studied veins cut a fossil travertine fissure ridge, near the Larderello geothermal area (Iano area, southern Tuscany) where geothermal fluid circulation is favored by NE-trending strike-to-oblique-slip faults and their intersections with NW-trending normal ones. U-Th dating indicates that fluid circulation occurred from (at least) 172 ka to 21 ka. In this time span, the geothermal fluid changed in composition, and the banded Ca-carbonate veins recorded these variations in terms of mineralogical and stable isotope composition and temperature (
T
) of deposition. We also documented for the first time the occurrence of Mn-rich black tree-shaped structures within the veins. Mineralogy coupled with stable and clumped isotope measurements allows the reconstruction of some features (i.e., crystal texture, temperature, and CO2 origin) and the inference of the processes (i.e., pH, T, and pCO2 variations) that have controlled the fluid evolution through time. Multiple-stage and one-stage deposition processes have played an important role in modifying the stable isotope composition of banded Ca-carbonate veins; temperature coupled with pCO2 also influenced their mineralogical composition. Interpreted in the context of the tectonic setting, the data show that the NW-trending faults have mainly controlled travertine deposition. Their intersection with NE-trending faults, interpreted as transfer faults, highlights the important role of transfer zones in channeling the geothermal fluids.
Geothermal systems in terrains affected by polyphase deformation have reservoirs with a 3D geometry that is always difficult to predict. In this paper we describe a fossil exhumed geothermal system exposed in eastern Elba Island that developed in a polyphase folded and faulted setting, which can help us to understand how geothermal fluids circulate in geological bodies with inherited structures. Geothermal circulation at Elba allowed the deposition of Fe-ore deposits (haematite/magnetite and pyrite) and altered rock volumes, which represent tracers of the palaeo-fluid flow. Normal and oblique-slip faults dissected a polyphase folded metasiliciclastic succession and produced a secondary permeability in the range of 5 × 10−13 to 5 × 10−16 m2. From the permeable fault zones acting as feeder conduits, geothermal fluids permeated the hydraulically connected metasiliciclastic rock bodies previously deformed by two generations of folds. Geothermal fluids followed the already defined geometry, thus giving rise to apparent folded mineralized levels. Fluid migration into the metasiliciclastic rocks was possible due to their chemical aggression, which favoured the dissolution and reprecipitation of quartz, and Fe-oxide and sulphide deposition. Renewed fluids maintained their chemical properties (pH value and temperature, mostly). This conclusion provides inputs for reconstructing geothermal conceptual models and evaluating the geothermal potentiality of exploitable areas developing in similar geological settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.