A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 μM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 μM). In particular, compound 10a (IC50 = 10 μM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure–activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.