Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width ≈ 150 amu) with an average molecular weight of ≈340 amu. The petroleum asphaltenes display a broader MWD (full width ≈ 300 amu) and are heavier on average (≈680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm.
Molecular weight distributions (MWDs) of model polyaromatic hydrocarbons (PAHs) and complex asphaltene samples have been investigated in laser desorption/ionization mass spectrometry (LDI-MS)experiments. Special efforts are devoted to the characterization of aggregation effects during the desorption process. It is found that non-covalent clusters of the PAHs and asphaltenes form readily in the desorbing plume. Aggregation is favoured in the experiments performed on dense samples at high laser energy and under continuous ion extraction conditions. In the absence of polar groups in the analyte molecules, the aggregation propensity correlates well with the size of the polycondensed system and with its degree of pericondensation, in qualitative agreement with previous theoretical predictions. For the polydispersed asphaltenes from two different crude oils, MWDs peaking at masses smaller than 500 amu with a highmass tail extending up to about 3000 amu have been observed, yielding average weights around 900 amu. Such MWDs are in good agreement with previous mass spectrometric measurement, as well as with diffusion studies in solution. In addition, stable asphaltene aggregates have been detected giving rise to two broad bands in the mass spectrum corresponding to average molecular weights of 2200-3100 amu and 15 000-19 000 amu, respectively. It is concluded that the strong aggregation propensity of asphaltenes is likely to be responsible for the apparent inconsistency between the MWD for these compounds determined by different groups in independent LDI-MS experiments. The reliability of different sample preparation procedures, including solvent-free methods, is discussed, and strategies are outlined that serve to apply the potentiality of LDI mass spectrometry to the characterization of covalent and non-covalent compounds in complex carbonaceous systems.
Crown ethers provide a valuable benchmark for the comprehension of molecular recognition mediated by inclusion complexes. One of the most relevant crown ethers, 18-crown-6 (18c6), features a flexible six-oxygen cyclic backbone that is well-known for its selective cation binding. This study employs infrared spectroscopy and quantum mechanical calculations to elucidate the structure of the gas-phase complexes formed by the 18c6 ether with the alkali metal cations. It is shown that symmetric and chiral arrangements play a dominant role in the conformational landscape of the 18c6-alkali system. Most stable 18c6-M(+) conformers are found to have symmetries C(3v) and C(2) for Cs(+), D(3d) for K(+), C(1) and D(3d) for Na(+), and D(2) for Li(+). Remarkably, whereas the bare 18c6 ether is achiral, chirality emerges in the C(2) and D(2) 18c6-M(+) conformations, both of which involve pairs of stable atropoisomers capable of acting as enantiomeric selective substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.