These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Multiple Sclerosis (MuS) is a complex multifactorial neuropathology, resulting in heterogeneous clinical presentation. A very active MuS research field concerns the discovery of biomarkers helpful to make an early and definite diagnosis. The sphingomyelin pathway has emerged as a molecular mechanism involved in MuS, since high levels of ceramides in cerebrospinal fluid (CSF) were related to axonal damage and neuronal dysfunction. Ceramides are the hydrolysis products of sphingomyelins through a reaction catalyzed by a family of enzymes named sphingomyelinases, which were recently related to myelin repair in MuS. Here, using a lipidomic approach, we observed low levels of several sphingomyelins in CSF of MuS patients compared to other inflammatory and non-inflammatory, central or peripheral neurological diseases. Starting by this result, we investigated the sphingomyelinase activity in CSF, showing a significantly higher enzyme activity in MuS. In support of these results we found high number of total exosomes in CSF of MuS patients and a high number of acid sphingomyelinase-enriched exosomes correlated to enzymatic activity and to disease severity. These data are of diagnostic relevance and show, for the first time, high number of acid sphingomyelinase-enriched exosomes in MuS, opening a new window for therapeutic approaches/targets in the treatment of MuS.
Primary open-angle glaucoma (POAG) represents the leading cause of irreversible blindness worldwide and is a multifactorial, chronic neurodegenerative disease characterized by retinal ganglion cell and visual field loss. There are many factors that are associated with the risk of developing POAG, with increased intraocular pressure being one of the most prevalent. Due to the asymptomatic nature of the disease, the diagnosis of POAG often occurs too late, which necessitates development of new effective screening strategies for early diagnosis of the disease. However, this task still remains unfulfilled. In order to provide further insights into the pathophysiology of POAG, we applied a targeted metabolomics strategy based on a high-throughput screening method for the determination of tear amino acids, free carnitine, acylcarnitines, succinylacetone, nucleosides, and lysophospholipids in naïve to therapy glaucomatous patients and normal controls. Also, we conducted proteomic analyses of the whole lacrimal fluid and purified extracellular vesicles obtained from POAG patients and healthy subjects. This multi-omics approach allowed us to conclude that POAG patients had lower levels of certain tear amino acids and lysophospholipids compared with controls. These targeted analyses also highlighted the low amount of acetylcarnitine (C2) in POAG patient which correlated well with proteomics data. Moreover, POAG tear proteins seemed to derive from extracellular vesicles, which carried a specific pro-inflammatory protein cargo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.