Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). This deficiency results in accumulation of certain galactolipids including psychosine which is cytotoxic for myelin-producing cells. Treatment of human patients at this time is limited to hematopoietic stem cell transplantation (HSCT) that appears to slow the progression of the disease when performed in presymptomatic patients. In this study, adeno-associated virus (AAV) serotype rh10-(AAVrh10) expressing mouse GALC was used in treating twitcher (twi) mice, the mouse model of GLD. The combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of viral particles in neonate twi mice resulted in high GALC activity in brain and cerebellum and moderate to high GALC activity in spinal cord, sciatic nerve, and some peripheral organs. Successfully treated mice maintained their weight with no or very little twitching, living up to 8 months. The physical activities of the long-lived treated mice were comparable to wild type for most of their lives. Treated mice showed normal abilities to mate, to deliver pups, to nurse and to care for the newborns. This strategy alone or in combination with other therapeutic options may be applicable to treatment of human patients.
Galactocerebrosidase (GALC) is a lysosomal beta-galactosidase responsible for the hydrolysis of the galactosyl moiety from several galactolipids, including galactosylceramide and psychosine. The deficiency of this enzyme results in the autosomal recessive disorder called Krabbe disease. It is also called globoid cell leukodystrophy (GLD), because of the characteristic storage cells found around cerebral blood vessels in the white matter of affected human patients and animal models. Although most patients present with clinical symptoms before 6 months of age, older patients, including adults, have been diagnosed by their severe deficiency of GALC activity. More than 40 mutations have been identified in patients with all clinical types of GLD. While some mutations clearly result in the infantile type if found homozygous or with another severe mutation, it is difficult to predict the phenotype of novel mutations or when mutations are found in the heterozygous state. A high incidence of polymorphic changes on apparent disease-causing alleles also complicates the interpretation of the effects of mutations. The detection of mutations has greatly improved carrier identification among family members and will permit preimplantation diagnosis for some families. The molecular characterization of the naturally occurring mouse, dog, and monkey models will permit their use in trials to evaluate different modes of therapy.
Krabbe disease is an autosomal recessive disorder resulting from defects in the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency leads to severe neurological features. The only treatment for presymptomatic infantile patients and later-onset patients is hematopoietic stem cell transplantation (HSCT). This treatment is less than ideal with most patients eventually developing problems with gait and expressive language. Several naturally occurring animal models are available, including twitcher (twi) mice, which have been used for many treatment trials. Previous studies demonstrated that multiple injections of AAVrh10-GALC into the central nervous system (CNS) of neonatal twi mice resulted in significant improvements. Recently we showed that one i.v. injection of AAVrh10-GALC on PND10 resulted in normal GALC activity in the CNS and high activity in the peripheral nervous system (PNS). In the present study, a single i.v. injection of AAVrh10-GALC was given 1 day after bone marrow transplantation (BMT) on PND10. The mice show greatly extended lifespan and normal behavior with improved CNS and PNS findings. Since HSCT is the standard of care in human patients, adding this single i.v. injection of viral vector may greatly improve the treatment outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.